Regular subgroups, nilpotent algebras and projectively congruent matrices

IF 0.7 Q2 MATHEMATICS
M. Pellegrini
{"title":"Regular subgroups, nilpotent algebras and projectively congruent matrices","authors":"M. Pellegrini","doi":"10.22108/IJGT.2017.21215","DOIUrl":null,"url":null,"abstract":"‎In this paper we highlight the connection between certain classes of regular subgroups of the affine group‎ ‎$AGL_n(F)$‎, ‎$F$ a field‎, ‎and associative nilpotent $F$-algebras of dimension $n$‎. ‎We also describe how the classification of projective congruence classes of square matrices is equivalent to the‎ ‎classification of regular subgroups of particular shape‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.21215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

‎In this paper we highlight the connection between certain classes of regular subgroups of the affine group‎ ‎$AGL_n(F)$‎, ‎$F$ a field‎, ‎and associative nilpotent $F$-algebras of dimension $n$‎. ‎We also describe how the classification of projective congruence classes of square matrices is equivalent to the‎ ‎classification of regular subgroups of particular shape‎.
正则子群,幂零代数和射影同余矩阵
在本文中,我们强调了仿射群$AGL_n(F)$ $, $ $F$ a域$,$ $与维数$n$ $的共轭幂零代数$F$之间的联系。我们还描述了方阵的射影同余类的分类如何等价于特定形状的正则子群的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信