A generalization of pure submodules

Q4 Mathematics
Faranak Farshadifar
{"title":"A generalization of pure submodules","authors":"Faranak Farshadifar","doi":"10.22124/JART.2020.17279.1215","DOIUrl":null,"url":null,"abstract":"‎Let $R$ be a commutative ring with identity‎, ‎$S$ a multiplicatively closed subset of $R$‎, ‎and $M$ be an $R$-module‎. ‎The goal of this work is to introduce the notion of $S$-pure submodules of $M$ as a generalization of pure submodules of $M$ and prove a number of results concerning of this class of modules‎. ‎We say that a submodule $N$ of $M$ is emph {$S$-pure} if there exists an $s in S$ such that $s(N cap IM) subseteq IN$ for every ideal $I$ of $R$‎. ‎Also‎, ‎We say that $M$ is emph{fully $S$-pure} if every submodule of $M$ is $S$-pure‎.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"8 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2020.17279.1215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

‎Let $R$ be a commutative ring with identity‎, ‎$S$ a multiplicatively closed subset of $R$‎, ‎and $M$ be an $R$-module‎. ‎The goal of this work is to introduce the notion of $S$-pure submodules of $M$ as a generalization of pure submodules of $M$ and prove a number of results concerning of this class of modules‎. ‎We say that a submodule $N$ of $M$ is emph {$S$-pure} if there exists an $s in S$ such that $s(N cap IM) subseteq IN$ for every ideal $I$ of $R$‎. ‎Also‎, ‎We say that $M$ is emph{fully $S$-pure} if every submodule of $M$ is $S$-pure‎.
纯子模块的泛化
‎设$R$是具有恒等式的交换环‎, ‎$S$$R的乘闭子集$‎, ‎$M$是$R$模块‎. ‎本文的目的是引入$S$-M$的纯子模的概念,作为$M$的纯个子模的推广,并证明了这类模的一些结果‎. ‎我们说$M$的子模$N$是emph{$S$-pure},如果S$中存在一个$S,使得对于$R的每一个理想$I$,$S(N-cap-IM)子条件为in$$‎. ‎而且‎, ‎我们说$M$是emph{fully$S$-pure},如果$M$的每个子模块都是$S$-pure‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信