Morawetz Estimates Without Relative Degeneration and Exponential Decay on Schwarzschild–de Sitter Spacetimes

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Georgios Mavrogiannis
{"title":"Morawetz Estimates Without Relative Degeneration and Exponential Decay on Schwarzschild–de Sitter Spacetimes","authors":"Georgios Mavrogiannis","doi":"10.1007/s00023-023-01293-2","DOIUrl":null,"url":null,"abstract":"<div><p>We use a novel physical space method to prove <i>relatively</i> non-degenerate integrated energy estimates for the wave equation on subextremal Schwarzschild–de?Sitter spacetimes with parameters <span>\\((M,\\Lambda )\\)</span>. These are integrated decay statements whose bulk energy density, though degenerate at highest order, is everywhere comparable to the energy density of the boundary fluxes. As a corollary, we prove that solutions of the wave equation decay exponentially on the exterior region. The main ingredients are a previous Morawetz estimate of Dafermos–Rodnianski and an additional argument based on commutation with a vector field which can be expressed in the form </p><div><div><span>$$\\begin{aligned} r\\sqrt{1-\\frac{2M}{r}-\\frac{\\Lambda }{3}r^2}\\frac{\\partial }{\\partial r}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\partial _r\\)</span> here denotes the coordinate vector field corresponding to a well-chosen system of hyperboloidal coordinates. Our argument gives exponential decay also for small first-order perturbations of the wave operator. In the limit <span>\\(\\Lambda =0\\)</span>, our commutation corresponds to the one introduced by Holzegel–Kauffman (A note on the wave equation on black hole spacetimes with small non-decaying first-order terms, 2020. arXiv:2005.13644).</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"24 9","pages":"3113 - 3152"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01293-2.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01293-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

Abstract

We use a novel physical space method to prove relatively non-degenerate integrated energy estimates for the wave equation on subextremal Schwarzschild–de?Sitter spacetimes with parameters \((M,\Lambda )\). These are integrated decay statements whose bulk energy density, though degenerate at highest order, is everywhere comparable to the energy density of the boundary fluxes. As a corollary, we prove that solutions of the wave equation decay exponentially on the exterior region. The main ingredients are a previous Morawetz estimate of Dafermos–Rodnianski and an additional argument based on commutation with a vector field which can be expressed in the form

$$\begin{aligned} r\sqrt{1-\frac{2M}{r}-\frac{\Lambda }{3}r^2}\frac{\partial }{\partial r}, \end{aligned}$$

where \(\partial _r\) here denotes the coordinate vector field corresponding to a well-chosen system of hyperboloidal coordinates. Our argument gives exponential decay also for small first-order perturbations of the wave operator. In the limit \(\Lambda =0\), our commutation corresponds to the one introduced by Holzegel–Kauffman (A note on the wave equation on black hole spacetimes with small non-decaying first-order terms, 2020. arXiv:2005.13644).

Abstract Image

史瓦西-德西特时空上无相对退化和指数衰减的Morawetz估计
我们用一种新的物理空间方法证明了次极值史瓦西-德?Sitter时空与参数\((M,\Lambda )\)。这些是积分衰变陈述,它们的体积能量密度,虽然在最高阶上是简并的,但到处都与边界通量的能量密度相当。作为推论,我们证明了波动方程的解在外部区域呈指数衰减。其主要成分是先前的Morawetz对Dafermos-Rodnianski的估计和一个基于矢量场的交换的附加论证,该矢量场可以用$$\begin{aligned} r\sqrt{1-\frac{2M}{r}-\frac{\Lambda }{3}r^2}\frac{\partial }{\partial r}, \end{aligned}$$的形式表示,其中\(\partial _r\)表示对应于一个选定的双曲坐标系的坐标矢量场。我们的论证也给出了波算符的小一阶扰动的指数衰减。在极限\(\Lambda =0\)中,我们的对易对应于Holzegel-Kauffman引入的对易(关于具有小的非衰减一阶项的黑洞时空波动方程的注释,2020)。[j] .农业科学学报:2005(5):13644。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信