Hydro-thermo-fluidic aspects of Oldroyd B fluid with hybrid nanostructure subject to low and moderate Prandtl numbers

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rajib Gope, M. Nayak, S. Shaw, S. Mondal
{"title":"Hydro-thermo-fluidic aspects of Oldroyd B fluid with hybrid nanostructure subject to low and moderate Prandtl numbers","authors":"Rajib Gope, M. Nayak, S. Shaw, S. Mondal","doi":"10.1108/mmms-09-2022-0200","DOIUrl":null,"url":null,"abstract":"PurposeThe major goal of this article is to investigate flow and thermal aspects of Oldroyd B with hybrid nanostructure subject to a radially stretched surface under the influence of low and moderate Prandtl numbers.Design/methodology/approachThe non-dimensional governing equations are solved considering BVP4C in MATLAB as instrumental.FindingsEntropy generation effect is analyzed. Radial velocity and entropy generation exhibit opposite effect in response to amplified relaxation and retardation time parameters in case of both low and moderate Prandtl numbers. Augmented relaxation and retardation time parameters controls heat transfer rate.The results show that increasing the aspect ratio increases both the average Nusselt and entropy generation numbers for each value of the Prandtl number, while increasing the prandtl number decreases both. There is also a minimum value for the entropy generation number at a given relaxation and retardation parameter.Research limitations/implicationsAssume that the Oldroyd B fluid is dispersed with hybrid nanostructure in order to ameliorate thermal conductivity of Oldroyd B fluid so as to make it as best coolant.Practical implicationsThe low range of Prandtl number comprising particles of air, gas, etc. and moderate range of Prandtl number comprising particles of honey, thin motor oil, or any non-Newtonian liquid. The hybrid nanofluid is radiative in nature. Also, the effects of significant physical parameters on entropy generation are highlighted. The entropy generation number intensifies due to the rise in temperature difference parameter at low/moderate Prandtl number effectively. Entropy minimization can lead to the amelioration of available energy thereby enhances the efficiency of several thermal systems.Originality/valueThis article's primary goal is to investigate the flow and thermal aspects of Oldroyd B with a hybrid nanostructure subject to a radially stretched surface under the influence of low and moderate Prandtl numbers.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-09-2022-0200","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

PurposeThe major goal of this article is to investigate flow and thermal aspects of Oldroyd B with hybrid nanostructure subject to a radially stretched surface under the influence of low and moderate Prandtl numbers.Design/methodology/approachThe non-dimensional governing equations are solved considering BVP4C in MATLAB as instrumental.FindingsEntropy generation effect is analyzed. Radial velocity and entropy generation exhibit opposite effect in response to amplified relaxation and retardation time parameters in case of both low and moderate Prandtl numbers. Augmented relaxation and retardation time parameters controls heat transfer rate.The results show that increasing the aspect ratio increases both the average Nusselt and entropy generation numbers for each value of the Prandtl number, while increasing the prandtl number decreases both. There is also a minimum value for the entropy generation number at a given relaxation and retardation parameter.Research limitations/implicationsAssume that the Oldroyd B fluid is dispersed with hybrid nanostructure in order to ameliorate thermal conductivity of Oldroyd B fluid so as to make it as best coolant.Practical implicationsThe low range of Prandtl number comprising particles of air, gas, etc. and moderate range of Prandtl number comprising particles of honey, thin motor oil, or any non-Newtonian liquid. The hybrid nanofluid is radiative in nature. Also, the effects of significant physical parameters on entropy generation are highlighted. The entropy generation number intensifies due to the rise in temperature difference parameter at low/moderate Prandtl number effectively. Entropy minimization can lead to the amelioration of available energy thereby enhances the efficiency of several thermal systems.Originality/valueThis article's primary goal is to investigate the flow and thermal aspects of Oldroyd B with a hybrid nanostructure subject to a radially stretched surface under the influence of low and moderate Prandtl numbers.
具有低和中等普朗特数混合纳米结构的Oldroyd B流体的水热流体方面
目的本文的主要目标是研究在中低普朗特数影响下,具有混合纳米结构的Oldroyd B在径向拉伸表面上的流动和热方面。设计/方法论/方法将MATLAB中的BVP4C作为工具来求解无量纲控制方程。发现对熵生成效应进行了分析。在低和中等普朗特数的情况下,径向速度和熵产生对放大的弛豫和延迟时间参数表现出相反的影响。增加的弛豫和延迟时间参数控制热传递速率。结果表明,增加长宽比会增加每个普朗特数值的平均努塞尔数和熵生成数,而增加普朗特数来减少这两个数。在给定的弛豫和延迟参数下,熵产生数也有一个最小值。研究局限性/含义假设Oldroyd B流体采用混合纳米结构分散,以改善Oldroyd B流体的导热性,使其成为最佳冷却剂。实际含义包括空气、气体等颗粒的普朗特数的低范围和包括蜂蜜、稀机油或任何非牛顿液体颗粒的普朗特数的中等范围。混合纳米流体具有辐射性质。此外,还强调了重要物理参数对熵产生的影响。在低/中等普朗特数下,由于温差参数的升高,熵产生数有效地增强。熵最小化可以改善可用能量,从而提高几个热系统的效率。原创性/价值本文的主要目标是研究在中低普朗特数的影响下,具有径向拉伸表面的混合纳米结构的Oldroyd B的流动和热方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信