{"title":"Kinetics of catalytic oxidation of oxygenated fuels on Pt/ZSM-5 catalyst","authors":"Yanyi Yao, Wei-juan Yang, Xing Zhang, Xiaoyu Zhu, Jun Cheng, Junhu Zhou","doi":"10.1080/13647830.2022.2063194","DOIUrl":null,"url":null,"abstract":"To build a set of complete kinetic parameters of oxygenated fuels kinetic model on Pt catalyst, methanol was used as an example to carry out the catalytic oxidation kinetics experiment of oxygenated fuels on Pt/ZSM-5 catalyst. The Power law model and Langmuir–Hinshelwood (L–H) model were established to characterise the catalytic oxidation reaction of methanol. Then the oxidation kinetics of methanol, ethanol, dimethyl ether (DME) and n-butanol on Pt/ZSM-5 was studied under the same experimental conditions. It was found that the reaction orders of fuel molecules (methanol is −0.14) were much less than that of oxygen (1.23) in Power law model. The adsorption constants of fuel molecules were higher than that of oxygen in L–H model. The adsorption characteristics of alcohols on Pt were similar, but the reaction orders of alcohols were not consistent. The adsorption constants and adsorption heat of dimethyl ether were much larger than that of alcohols. The intrinsic reaction rates of four oxygenated fuels on Pt/ZSM-5 were compared at the same input power: r methanol r DME r ethanol r n-butanol. In general, methanol is a suitable oxygenated fuel in the design and development of catalytic micro-combustor.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2063194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
To build a set of complete kinetic parameters of oxygenated fuels kinetic model on Pt catalyst, methanol was used as an example to carry out the catalytic oxidation kinetics experiment of oxygenated fuels on Pt/ZSM-5 catalyst. The Power law model and Langmuir–Hinshelwood (L–H) model were established to characterise the catalytic oxidation reaction of methanol. Then the oxidation kinetics of methanol, ethanol, dimethyl ether (DME) and n-butanol on Pt/ZSM-5 was studied under the same experimental conditions. It was found that the reaction orders of fuel molecules (methanol is −0.14) were much less than that of oxygen (1.23) in Power law model. The adsorption constants of fuel molecules were higher than that of oxygen in L–H model. The adsorption characteristics of alcohols on Pt were similar, but the reaction orders of alcohols were not consistent. The adsorption constants and adsorption heat of dimethyl ether were much larger than that of alcohols. The intrinsic reaction rates of four oxygenated fuels on Pt/ZSM-5 were compared at the same input power: r methanol r DME r ethanol r n-butanol. In general, methanol is a suitable oxygenated fuel in the design and development of catalytic micro-combustor.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.