{"title":"Research on the probability model of basic wind speed estimation in China","authors":"Cheng Xiang, Airong Chen, Li Qiheng, R. Ma","doi":"10.12989/WAS.2021.32.6.587","DOIUrl":null,"url":null,"abstract":"Wind speed is one of the most critical parameters in predicting structural performance under wind effects. In most of the current standards and codes, the design reference wind speed is usually determined by fitting a typical probability distribution model based on the historical wind speed data. However, a single distribution model is generally insufficient to reflect the regional differences in wind characteristics. Therefore, in this research, the optimal probability is selected to determine \nthe extreme wind speed in different regions in China based on the fourth-order linear moment method (FLMM). Firstly, several probability models for estimating extreme wind speed distribution are introduced. Then, the optimal model, as well as the relative parameters, are determined by the linear moments (L-moments) method, and the one with the minimum value of the fourth-order linear moment between the probability model and the sample is taken as the optimal distribution. Finally, the extreme wind speed of each meteorological station is estimated according to the obtained optimal distribution, and the results are \ncompared with the recorded extreme wind speed of typical metrological stations as well as that in the previous version of specification (JTG/T D60-01-2004). Compared with the traditional method that adopting a single distribution model-based wind speed estimation, the extreme wind speed obtained by the proposed method possessed higher accuracy.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"32 1","pages":"587"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/WAS.2021.32.6.587","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Wind speed is one of the most critical parameters in predicting structural performance under wind effects. In most of the current standards and codes, the design reference wind speed is usually determined by fitting a typical probability distribution model based on the historical wind speed data. However, a single distribution model is generally insufficient to reflect the regional differences in wind characteristics. Therefore, in this research, the optimal probability is selected to determine
the extreme wind speed in different regions in China based on the fourth-order linear moment method (FLMM). Firstly, several probability models for estimating extreme wind speed distribution are introduced. Then, the optimal model, as well as the relative parameters, are determined by the linear moments (L-moments) method, and the one with the minimum value of the fourth-order linear moment between the probability model and the sample is taken as the optimal distribution. Finally, the extreme wind speed of each meteorological station is estimated according to the obtained optimal distribution, and the results are
compared with the recorded extreme wind speed of typical metrological stations as well as that in the previous version of specification (JTG/T D60-01-2004). Compared with the traditional method that adopting a single distribution model-based wind speed estimation, the extreme wind speed obtained by the proposed method possessed higher accuracy.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.