Synthesis of pyrimidines by Fe3O4@SiO2-L-proline nanoparticles

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
J. Safaei‐Ghomi, Z. Samadi
{"title":"Synthesis of pyrimidines by Fe3O4@SiO2-L-proline nanoparticles","authors":"J. Safaei‐Ghomi, Z. Samadi","doi":"10.1515/mgmc-2020-0014","DOIUrl":null,"url":null,"abstract":"Abstract Fe3O4@SiO2-L-proline nanoparticles have been used as an effective catalyst for the preparation of pyrimidines by three-component reactions of 1,3-dimethylbarbituric acid, aromatic aldehydes and 4-methyl aniline or 4-methoxy aniline under reflux condition in ethanol. Fe3O4@SiO2-L-proline nanoparticles have been characterized by scanning electronic microscopy (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA), energy dispersive X-ray (EDS), dynamic light scattering (DLS) and FT-IR spectroscopy. This method provides several advantages including, the reusability of the catalyst, low catalyst loading, atom economy, short reaction times and high yields of products.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"43 1","pages":"117 - 124"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2020-0014","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2020-0014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Fe3O4@SiO2-L-proline nanoparticles have been used as an effective catalyst for the preparation of pyrimidines by three-component reactions of 1,3-dimethylbarbituric acid, aromatic aldehydes and 4-methyl aniline or 4-methoxy aniline under reflux condition in ethanol. Fe3O4@SiO2-L-proline nanoparticles have been characterized by scanning electronic microscopy (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA), energy dispersive X-ray (EDS), dynamic light scattering (DLS) and FT-IR spectroscopy. This method provides several advantages including, the reusability of the catalyst, low catalyst loading, atom economy, short reaction times and high yields of products.
嘧啶的合成Fe3O4@SiO2-L-proline纳米粒子
摘要Fe3O4@SiO2-L-proline在乙醇回流条件下,1,3-二甲基巴比妥酸、芳香醛与4-甲基苯胺或4-甲氧基苯胺的三组分反应制备嘧啶时,纳米粒子已被用作有效的催化剂。Fe3O4@SiO2-L-proline通过扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、振动样品磁强计(VSM)、热重分析(TGA)、能谱仪(EDS)、动态光散射(DLS)和红外光谱对纳米颗粒进行了表征。该方法提供了几个优点,包括催化剂的可重复使用性、低催化剂负载量、原子经济性、短反应时间和高产物产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信