{"title":"Morphology-Driven Emissivity of Microscale Tree-like Structures for Radiative Thermal Management","authors":"Anirudh Krishna, Jaeho Lee","doi":"10.1080/15567265.2018.1446065","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spectral emissivity of surface materials has a strong impact on thermal properties of systems that are exposed in the ambient environment. While the solar spectrum heating up the surface ranges from 200 to 2,500 nm, the atmospheric transmission spectrum allowed for infrared cooling ranges from 8 to 14 µm. However, conventional surface materials have emissivity values that are either high or low throughout the spectrum. For example, ceramic materials are typically emissive and metallic materials are typically reflective and not emissive. Here, we show that surface materials with artificial periodicities can have a selectively controlled emissivity and that the surface morphology can transform ceramic materials to be reflective or metallic materials to be emissive. As a model system, we use microscale tree-like structures, or briefly micro-trees, to demonstrate wide variations of morphology-driven emissivity spectra. Our computation based on the rigorous coupled-wave analysis shows that optimal designs of micro-trees can act as a nearly perfect reflector or a black body depending on the spectral range and offer radiative cooling or heating capabilities beyond the limits of conventional materials. For cooling, metallic micro-trees provide a surface temperature 10 K lower than that of bare metallic surfaces in a normal ambient condition, and for heating, ceramic micro-trees provide a surface temperature 8 K higher than that of bare ceramic materials. The morphology-driven emissivity of micro-trees can offer a net cooling power of 136 W/m2 or a net heating power of 12 W/m2 depending on the application without requiring any active devices, and these results guide optimal designs of artificial materials for thermal management.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"22 1","pages":"124 - 136"},"PeriodicalIF":2.7000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1446065","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1446065","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14
Abstract
ABSTRACT Spectral emissivity of surface materials has a strong impact on thermal properties of systems that are exposed in the ambient environment. While the solar spectrum heating up the surface ranges from 200 to 2,500 nm, the atmospheric transmission spectrum allowed for infrared cooling ranges from 8 to 14 µm. However, conventional surface materials have emissivity values that are either high or low throughout the spectrum. For example, ceramic materials are typically emissive and metallic materials are typically reflective and not emissive. Here, we show that surface materials with artificial periodicities can have a selectively controlled emissivity and that the surface morphology can transform ceramic materials to be reflective or metallic materials to be emissive. As a model system, we use microscale tree-like structures, or briefly micro-trees, to demonstrate wide variations of morphology-driven emissivity spectra. Our computation based on the rigorous coupled-wave analysis shows that optimal designs of micro-trees can act as a nearly perfect reflector or a black body depending on the spectral range and offer radiative cooling or heating capabilities beyond the limits of conventional materials. For cooling, metallic micro-trees provide a surface temperature 10 K lower than that of bare metallic surfaces in a normal ambient condition, and for heating, ceramic micro-trees provide a surface temperature 8 K higher than that of bare ceramic materials. The morphology-driven emissivity of micro-trees can offer a net cooling power of 136 W/m2 or a net heating power of 12 W/m2 depending on the application without requiring any active devices, and these results guide optimal designs of artificial materials for thermal management.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.