CFD Simulation of Energy Transfer within a Membrane Heat Exchanger under Turbulent Flow

IF 1.7 Q3 ENGINEERING, MECHANICAL
Shuruq Shawish, Diala Bani Mostafa, Rafat F. Al-Waked, M. Nasif
{"title":"CFD Simulation of Energy Transfer within a Membrane Heat Exchanger under Turbulent Flow","authors":"Shuruq Shawish, Diala Bani Mostafa, Rafat F. Al-Waked, M. Nasif","doi":"10.59038/jjmie/170201","DOIUrl":null,"url":null,"abstract":"Air-to-air fixed plate enthalpy membrane exchanger is considered one of the equipment used in energy recovery services. Thermal performance of air-to-air energy recovery ventilator is examined numerically using a 3D CFD simulation. Air flow inside the exchanger is tested using four numerical turbulence models: Standard k-ε, k-ε renormalization group (RNG), k-ε realizable and k-ω shear-stress transport (SST) models. The adopted heat and mass exchange element within the ventilator (membrane) is a thin 98 µm porous 60 gsm Kraft paper. A user defined function (UDF) has been developed to enable the CFD model to estimate amounts of mass exchanged between the two sides of the membrane. Grid dependency study is conducted and results have shown that a perpendicular distance of 50  m or less from the membrane surface would result in a negligible variation in the ERV thermal effectiveness. The validated CFD model and UDF code against experimental measurement resulted in a maximum difference in thermal effectiveness of 3.6%. Results have shown that the SST k-ω turbulence models under enhanced wall treatment showed more sensitivity to flow at all Re values when compared with the k-ε simulated models.","PeriodicalId":45347,"journal":{"name":"Jordan Journal of Mechanical and Industrial Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mechanical and Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59038/jjmie/170201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Air-to-air fixed plate enthalpy membrane exchanger is considered one of the equipment used in energy recovery services. Thermal performance of air-to-air energy recovery ventilator is examined numerically using a 3D CFD simulation. Air flow inside the exchanger is tested using four numerical turbulence models: Standard k-ε, k-ε renormalization group (RNG), k-ε realizable and k-ω shear-stress transport (SST) models. The adopted heat and mass exchange element within the ventilator (membrane) is a thin 98 µm porous 60 gsm Kraft paper. A user defined function (UDF) has been developed to enable the CFD model to estimate amounts of mass exchanged between the two sides of the membrane. Grid dependency study is conducted and results have shown that a perpendicular distance of 50  m or less from the membrane surface would result in a negligible variation in the ERV thermal effectiveness. The validated CFD model and UDF code against experimental measurement resulted in a maximum difference in thermal effectiveness of 3.6%. Results have shown that the SST k-ω turbulence models under enhanced wall treatment showed more sensitivity to flow at all Re values when compared with the k-ε simulated models.
湍流条件下膜式换热器内能量传递的CFD模拟
空气-空气固定板焓膜换热器被认为是能源回收服务中使用的设备之一。采用三维CFD数值模拟方法对空气-空气能量回收通风机的热性能进行了数值研究。采用标准k-ε、k-ε重整化群(RNG)、k-ε可实现模型和k-ω剪切应力输运(SST)四种湍流数值模型对换热器内的气流进行了测试。通风机(膜)内采用的热交换质元件为98µm多孔60 gsm牛皮纸。开发了用户定义函数(UDF),使CFD模型能够估计膜两侧之间交换的质量量。进行了网格依赖性研究,结果表明,与膜表面垂直距离为50m或更小的距离将导致ERV热效率的变化可以忽略不计。经过验证的CFD模型和UDF代码与实验测量结果的差异最大为3.6%。结果表明,与k-ε模拟模型相比,强化壁面处理下的SST k-ω湍流模型对所有Re值下的流动都更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
58.30%
发文量
2
期刊介绍: Jordan Journal of Mechanical and Industrial Engineering (JJMIE) is a refereed international journal to be of interest and use to all those concerned with research in various fields of, or closely related to, mechanical and industrial engineering disciplines. Jordan Journal of Mechanical and Industrial Engineering aims to provide a highly readable and valuable addition to the literature which will serve as an indispensable reference tool for years to come. The coverage of the journal includes all new theoretical and experimental findings in the fields of mechanical and industrial engineering or any closely related fields. The journal also encourages the submission of critical review articles covering advances in recent research of such fields as well as technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信