Exploring aerial perching and grasping with dual symmetric manipulators and compliant end-effectors

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Pengfei Yu, Zihao Wang, K. Wong
{"title":"Exploring aerial perching and grasping with dual symmetric manipulators and compliant end-effectors","authors":"Pengfei Yu, Zihao Wang, K. Wong","doi":"10.1177/1756829319877416","DOIUrl":null,"url":null,"abstract":"Inspired by talon of a predator bird, this paper presents a quadrotor with two 2- Degree of Freedoms (DOFs) compliant manipulators which could mimic bird perching and grasping. The symmetric configuration of the manipulators causes minimum shift in center of gravity and a minimum disturbance to the angular momentum of the platform during grasping and perching maneuvers. Thus, the dynamics of the manipulator is independent to that of the platform. Moreover, a compliant end-effector is introduced to decouple the dynamics of the unmanned aerial vehicles from the force interaction with the environment or target objects. Therefore, aerial manipulation problem is significantly simplified due to the minimum amount of disturbance among components. In addition, the manipulators could function as the landing gear, which allows larger work envelope, weight saving and less landing impact. It also has the potential to achieve a bird-like “perch and watch” to increase the endurance of unmanned aerial vehicles in missions that involve extended endurance.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829319877416","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829319877416","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 13

Abstract

Inspired by talon of a predator bird, this paper presents a quadrotor with two 2- Degree of Freedoms (DOFs) compliant manipulators which could mimic bird perching and grasping. The symmetric configuration of the manipulators causes minimum shift in center of gravity and a minimum disturbance to the angular momentum of the platform during grasping and perching maneuvers. Thus, the dynamics of the manipulator is independent to that of the platform. Moreover, a compliant end-effector is introduced to decouple the dynamics of the unmanned aerial vehicles from the force interaction with the environment or target objects. Therefore, aerial manipulation problem is significantly simplified due to the minimum amount of disturbance among components. In addition, the manipulators could function as the landing gear, which allows larger work envelope, weight saving and less landing impact. It also has the potential to achieve a bird-like “perch and watch” to increase the endurance of unmanned aerial vehicles in missions that involve extended endurance.
利用双对称机械手和柔性末端执行器探索空中栖息和抓取
本文以捕食鸟类的爪子为灵感,设计了一种四旋翼飞行器,该飞行器具有两个2自由度柔性操纵臂,可以模拟鸟类的栖息和抓握。机械手的对称结构使抓取和栖息机动时重心位移最小,对平台角动量的干扰最小。因此,机械臂的动力学与平台的动力学无关。此外,引入柔性末端执行器将无人机的动力学与环境或目标物体的力相互作用解耦。因此,由于组件之间的干扰量最小,因此大大简化了空中操纵问题。此外,机械手可以作为起落架,这样可以实现更大的工作范围,减轻重量,减少着陆冲击。它也有可能实现像鸟一样的“栖息和观察”,以增加无人机在需要延长续航时间的任务中的续航能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信