A note on groups with a finite number of pairwise permutable seminormal subgroups

IF 0.7 Q2 MATHEMATICS
A. Trofimuk
{"title":"A note on groups with a finite number of pairwise permutable seminormal subgroups","authors":"A. Trofimuk","doi":"10.22108/IJGT.2021.119299.1575","DOIUrl":null,"url":null,"abstract":"A subgroup $A$ of a group $G$ is called {it seminormal} in $G$‎, ‎if there exists a subgroup $B$ such that $G=AB$ and $AX$~is a subgroup of $G$ for every‎ ‎subgroup $X$ of $B$‎. ‎The group $G = G_1 G_2 cdots G_n$ with pairwise permutable subgroups $G_1‎,‎ldots‎,‎G_n$ such that $G_i$ and $G_j$ are seminormal in~$G_iG_j$ for any $i‎, ‎jin {1,ldots‎,‎n}$‎, ‎$ineq j$‎, ‎is studied‎. ‎In particular‎, ‎we prove that if $G_iin frak F$ for all $i$‎, ‎then $G^frak Fleq (G^prime)^frak N$‎, ‎where $frak F$ is a saturated formation and $frak U subseteq frak F$‎. ‎Here $frak N$ and $frak U$‎~ ‎are the formations of all nilpotent and supersoluble groups respectively‎, ‎the $mathfrak F$-residual $G^frak F$ of $G$ is the intersection of all those normal‎ ‎subgroups $N$ of $G$ for which $G/N in mathfrak F$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.119299.1575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subgroup $A$ of a group $G$ is called {it seminormal} in $G$‎, ‎if there exists a subgroup $B$ such that $G=AB$ and $AX$~is a subgroup of $G$ for every‎ ‎subgroup $X$ of $B$‎. ‎The group $G = G_1 G_2 cdots G_n$ with pairwise permutable subgroups $G_1‎,‎ldots‎,‎G_n$ such that $G_i$ and $G_j$ are seminormal in~$G_iG_j$ for any $i‎, ‎jin {1,ldots‎,‎n}$‎, ‎$ineq j$‎, ‎is studied‎. ‎In particular‎, ‎we prove that if $G_iin frak F$ for all $i$‎, ‎then $G^frak Fleq (G^prime)^frak N$‎, ‎where $frak F$ is a saturated formation and $frak U subseteq frak F$‎. ‎Here $frak N$ and $frak U$‎~ ‎are the formations of all nilpotent and supersoluble groups respectively‎, ‎the $mathfrak F$-residual $G^frak F$ of $G$ is the intersection of all those normal‎ ‎subgroups $N$ of $G$ for which $G/N in mathfrak F$‎.
关于具有有限个成对可置换半正规子群的群的一个注记
群$G$的子群$A$在$G$ $中称为{it半正规},如果存在子群$B$使得$G=AB$且$AX$~是$G$的子群,对于$B$ $ $ $的每$ $ $X$都是$G$的子群。研究了一类群$G = G_1 G_2 cdots G_n$,具有一对可变子群$G_1, $ ldots, $ G_n$,使得$G_i$和$G_j$在~$G_iG_j$中对任意$i, $ jin {1, $ ldots, $ n}$ $, $ineq j$ $, $ $是半正态的。特别地,我们证明了如果$ g_i_frk F$对于所有$i$ $,则$G^ frk Fleq (G^ ')^ frk N$ $,其中$ frk F$为饱和地层,$ frk F$ $为饱和地层,$ frk F$ $为饱和地层。这里$frak N$和$frak U$分别是所有幂零群和超溶群的形成,$mathfrak F$-残差$G^frak F$是$G$的所有正规子群$N$的交集,其中$G/N在mathfrak F$ $中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信