{"title":"Improved bounds for the Erdős-Rogers function","authors":"T. Gowers, Oliver Janzer","doi":"10.19086/aic.12048","DOIUrl":null,"url":null,"abstract":"[Ramsey's Theorem](https://en.wikipedia.org/wiki/Ramsey%27s_theorem) is one of the most prominent results in graph theory. In its simplest form, it asserts that every sufficiently large two-edge-colored complete graph contains a large monochromatic complete subgraph. This theorem has been generalized to a plethora of statements asserting that every sufficiently large structure of a given kind contains a large \"tame\" substructure.\n\nThe article concerns a closely related problem: for a structure with a given property, find a substructure possessing an even stronger property. For example, what is the largest $K_3$-free induced subgraph of an $n$-vertex $K_4$-free graph? The answer to this question is approximately $n^{1/2}$. The lower bound is easy. If a given graph has a vertex of degree at least $n^{1/2}$, then its neighbors induce a $K_3$-free subgraph with at least $n^{1/2}$ vertices. Otherwise, a greedy procedure yields an independent set of size almost $n^{1/2}$. The argument generalizes to $K_s$-free induced subgraphs of $K_{s+1}$-free graphs. Dudek, Retter and Rödl provided a construction showing that the exponent $1/2$ cannot be improved and asked whether the same is the case for $K_s$-free induced subgraphs of $K_{s+2}$-free graphs. The authors answer this question by providing a construction of $K_{s+2}$-free $n$-vertex graphs with no $K_s$-free induced subgraph with $n^{\\alpha_s}$ vertices with $\\alpha_s<1/2$ for every $s\\ge 3$. Their arguments extend to the case of $K_t$-free graphs with no large $K_s$-free induced subgraph for $s+2\\le t\\le 2s-1$ and $s\\ge 3$.","PeriodicalId":36338,"journal":{"name":"Advances in Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.12048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6
Abstract
[Ramsey's Theorem](https://en.wikipedia.org/wiki/Ramsey%27s_theorem) is one of the most prominent results in graph theory. In its simplest form, it asserts that every sufficiently large two-edge-colored complete graph contains a large monochromatic complete subgraph. This theorem has been generalized to a plethora of statements asserting that every sufficiently large structure of a given kind contains a large "tame" substructure.
The article concerns a closely related problem: for a structure with a given property, find a substructure possessing an even stronger property. For example, what is the largest $K_3$-free induced subgraph of an $n$-vertex $K_4$-free graph? The answer to this question is approximately $n^{1/2}$. The lower bound is easy. If a given graph has a vertex of degree at least $n^{1/2}$, then its neighbors induce a $K_3$-free subgraph with at least $n^{1/2}$ vertices. Otherwise, a greedy procedure yields an independent set of size almost $n^{1/2}$. The argument generalizes to $K_s$-free induced subgraphs of $K_{s+1}$-free graphs. Dudek, Retter and Rödl provided a construction showing that the exponent $1/2$ cannot be improved and asked whether the same is the case for $K_s$-free induced subgraphs of $K_{s+2}$-free graphs. The authors answer this question by providing a construction of $K_{s+2}$-free $n$-vertex graphs with no $K_s$-free induced subgraph with $n^{\alpha_s}$ vertices with $\alpha_s<1/2$ for every $s\ge 3$. Their arguments extend to the case of $K_t$-free graphs with no large $K_s$-free induced subgraph for $s+2\le t\le 2s-1$ and $s\ge 3$.
[拉姆齐定理](https://en.wikipedia.org/wiki/Ramsey%27s_theorem) is one of the most prominent results in graph theory. In its simplest form, it asserts that every sufficiently large two-edge-colored complete graph contains a large monochromatic complete subgraph. This theorem has been generalized to a plethora of statements asserting that every sufficiently large structure of a given kind contains a large "tame" substructure.The article concerns a closely related problem: for a structure with a given property, find a substructure possessing an even stronger property. For example, what is the largest $K_3$-free induced subgraph of an $n$-vertex $K_4$-free graph? The answer to this question is approximately $n^{1/2}$. The lower bound is easy. If a given graph has a vertex of degree at least $n^{1/2}$, then its neighbors induce a $K_3$-free subgraph with at least $n^{1/2}$ vertices. Otherwise, a greedy procedure yields an independent set of size almost $n^{1/2}$. The argument generalizes to $K_s$-free induced subgraphs of $K_{s+1}$-free graphs. Dudek, Retter and Rödl provided a construction showing that the exponent $1/2$ cannot be improved and asked whether the same is the case for $K_s$-free induced subgraphs of $K_{s+2}$-free graphs. The authors answer this question by providing a construction of $K_{s+2}$-free $n$-vertex graphs with no $K_s$-free induced subgraph with $n^{\alpha_s}$ vertices with $\alpha_s<1/2$ for every $s\ge 3$. Their arguments extend to the case of $K_t$-free graphs with no large $K_s$-free induced subgraph for $s+2\le t\le 2s-1$ and $s\ge 3$.