The average value of a certain number-theoretic function over the primes

IF 0.4 Q4 MATHEMATICS
Louis Rubin
{"title":"The average value of a certain number-theoretic function over the primes","authors":"Louis Rubin","doi":"10.7546/nntdm.2023.29.3.564-570","DOIUrl":null,"url":null,"abstract":"We consider functions $F:\\mathbb{Z}_{\\geq 0}\\rightarrow\\mathbb{Z}_{\\geq 0}$ for which there exists a positive integer $n$ such that two conditions hold: $F(p)$ divides $n$ for every prime $p$, and for each divisor $d$ of $n$ and every prime $p$, we have that $d$ divides $F(p)$ iff $d$ divides $F(p \\mod d)$. Following an approach of Khrennikov and Nilsson, we employ the prime number theorem for arithmetic progressions to derive an expression for the average value of such an $F$ over all primes $p$, recovering a theorem of these authors as a special case. As an application, we compute the average number of $r$-periodic points of a multivariate power map defined on a product $Z_{f_1(p)}\\times\\cdots\\times Z_{f_m(p)}$ of cyclic groups, where $f_i(t)$ is a polynomial.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.3.564-570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider functions $F:\mathbb{Z}_{\geq 0}\rightarrow\mathbb{Z}_{\geq 0}$ for which there exists a positive integer $n$ such that two conditions hold: $F(p)$ divides $n$ for every prime $p$, and for each divisor $d$ of $n$ and every prime $p$, we have that $d$ divides $F(p)$ iff $d$ divides $F(p \mod d)$. Following an approach of Khrennikov and Nilsson, we employ the prime number theorem for arithmetic progressions to derive an expression for the average value of such an $F$ over all primes $p$, recovering a theorem of these authors as a special case. As an application, we compute the average number of $r$-periodic points of a multivariate power map defined on a product $Z_{f_1(p)}\times\cdots\times Z_{f_m(p)}$ of cyclic groups, where $f_i(t)$ is a polynomial.
数论函数在素数上的平均值
我们考虑函数$F:\mathbb{Z}_{\geq 0}\rightarrow\mathbb{Z}_{\geq 0}$,其中存在一个正整数$n$,使得两个条件成立:$F(p)$对每一个素数$p$除$n$,对于$n$和每一个素数$p$的每一个约数$d$,我们有$d$除$F(p)$, $d$除$F(p \mod d)$。根据Khrennikov和Nilsson的方法,我们利用等差数列的素数定理,推导出了这样一个表达式$F$在所有素数$p$上的平均值,并恢复了这两位作者的一个定理作为特例。作为应用,我们计算了定义在循环群的乘积$Z_{f_1(p)}\times\cdots\times Z_{f_m(p)}$上的多元幂映射的$r$ -周期点的平均值,其中$f_i(t)$是一个多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信