Rationally connected rational double covers of primitive Fano varieties

IF 0.9 Q2 MATHEMATICS
A. Pukhlikov
{"title":"Rationally connected rational double covers of primitive Fano varieties","authors":"A. Pukhlikov","doi":"10.46298/epiga.2020.volume4.5890","DOIUrl":null,"url":null,"abstract":"We show that for a Zariski general hypersurface $V$ of degree $M+1$ in\n${\\mathbb P}^{M+1}$ for $M\\geqslant 5$ there are no Galois rational covers\n$X\\dashrightarrow V$ of degree $d\\geqslant 2$ with an abelian Galois group,\nwhere $X$ is a rationally connected variety. In particular, there are no\nrational maps $X\\dashrightarrow V$ of degree 2 with $X$ rationally connected.\nThis fact is true for many other families of primitive Fano varieties as well\nand motivates a conjecture on absolute rigidity of primitive Fano varieties.\n\n Comment: the final journal version","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2020.volume4.5890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We show that for a Zariski general hypersurface $V$ of degree $M+1$ in ${\mathbb P}^{M+1}$ for $M\geqslant 5$ there are no Galois rational covers $X\dashrightarrow V$ of degree $d\geqslant 2$ with an abelian Galois group, where $X$ is a rationally connected variety. In particular, there are no rational maps $X\dashrightarrow V$ of degree 2 with $X$ rationally connected. This fact is true for many other families of primitive Fano varieties as well and motivates a conjecture on absolute rigidity of primitive Fano varieties. Comment: the final journal version
原始Fano变种的有理连通双盖
我们证明了对于$M\geqslant 5$中$M+1$次的Zariski广义超曲面$V$,不存在具有阿贝尔Galois群的$d\geqsant 2$次的Galois有理覆盖$X\dashrightarrow V$,其中$X$是有理连通的变种。特别地,存在具有$X$有理连接的2次正规映射$X\dashrightarrow V$。这一事实对许多其他原始法诺变种家族也是如此,并引发了对原始法诺变体绝对刚性的猜测。评论:最终期刊版本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信