Tidal Level Prediction Using Combined Methods of Harmonic Analysis and Deep Neural Networks in Southern Coastline of Iran

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Kourosh Shahryari Nia, M. Sharifi, S. Farzaneh
{"title":"Tidal Level Prediction Using Combined Methods of Harmonic Analysis and Deep Neural Networks in Southern Coastline of Iran","authors":"Kourosh Shahryari Nia, M. Sharifi, S. Farzaneh","doi":"10.1080/01490419.2022.2116615","DOIUrl":null,"url":null,"abstract":"Abstract Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"645 - 669"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2116615","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low.
调和分析与深度神经网络联合预测伊朗南部海岸线潮位
摘要潮汐和水位的预测一直是研究人员和专业人员的重要课题,因为潮汐水位的研究在支持海洋经济、港口建设项目和海上运输方面发挥着关键作用。潮汐水位是天文(确定性部分)和非天文(随机部分)水位的组合。在本研究中,我们将谐波分析(HA)与三种深度神经网络(DNN)相结合,即长短期记忆(LSTM)、卷积神经网络(CNN)和多层感知器(MLP)。HA方法用于预测天文分量,DNN用于预测非天文水位。我们使用了伊朗南部海岸线三个站点的潮汐测量数据来证明我们的模型的有效性和准确性。我们使用RMSE、MAE、R2(r平方)和MAPE来评估模型的性能。最后,LSTM网络在大多数情况下都表现出了优越的性能,尽管其他网络也表现出了良好的结果。所有三个DNN的R2均为0.99,RMSE、MAE和MAPE表明误差较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信