{"title":"Low-Cost Sensors for Air Quality Monitoring - the Current State of the Technology and a Use Overview","authors":"P. Buček, Petr Maršolek, J. Bílek","doi":"10.2478/cdem-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract In recent years the monitoring of air quality using cheap sensors has become an interesting alternative to conventional analytical techniques. Apart from vast price differences conventional techniques need to be performed by the trained personnel of commercial or research laboratories. Sensors capable of measuring dust, ozone, nitrogen and sulphur oxides, or other air pollutants are relatively simple electronic devices, which are comparable in size to a mobile phone. They provide the general public with the possibility to monitor air quality which can contribute to various projects that differ in regional scale, commercial funding or community-base. In connection with the low price of sensors arises the question of the quality of measured data. This issue is addressed by a number of studies focused on comparing the sensor data with the data of reference measurements. Sensory measurement is influenced by the monitored analyte, type and design of the particular sensor, as well as by the measurement conditions. Currently sensor networks serve as an additional source of information to the network of air quality monitoring stations, where the density of the network provides concentration trends in the area that may exceed specific measured values of pollutant concentrations and low uncertainty of reference measurements. The constant development of all types of sensors is leading to improvements and the difference in data quality between sensors and conventional monitoring techniques may be reduced.","PeriodicalId":41079,"journal":{"name":"Chemistry-Didactics-Ecology-Metrology","volume":"26 1","pages":"41 - 54"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry-Didactics-Ecology-Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cdem-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract In recent years the monitoring of air quality using cheap sensors has become an interesting alternative to conventional analytical techniques. Apart from vast price differences conventional techniques need to be performed by the trained personnel of commercial or research laboratories. Sensors capable of measuring dust, ozone, nitrogen and sulphur oxides, or other air pollutants are relatively simple electronic devices, which are comparable in size to a mobile phone. They provide the general public with the possibility to monitor air quality which can contribute to various projects that differ in regional scale, commercial funding or community-base. In connection with the low price of sensors arises the question of the quality of measured data. This issue is addressed by a number of studies focused on comparing the sensor data with the data of reference measurements. Sensory measurement is influenced by the monitored analyte, type and design of the particular sensor, as well as by the measurement conditions. Currently sensor networks serve as an additional source of information to the network of air quality monitoring stations, where the density of the network provides concentration trends in the area that may exceed specific measured values of pollutant concentrations and low uncertainty of reference measurements. The constant development of all types of sensors is leading to improvements and the difference in data quality between sensors and conventional monitoring techniques may be reduced.