Genus 0 Gopakumar–Vafa Invariants of the Banana Manifold

IF 0.6 4区 数学 Q3 MATHEMATICS
Nina Morishige
{"title":"Genus 0 Gopakumar–Vafa Invariants of the Banana Manifold","authors":"Nina Morishige","doi":"10.1093/QMATH/HAAB026","DOIUrl":null,"url":null,"abstract":"\n The Banana manifold $X_{{\\text{Ban}}}$ is a compact Calabi–Yau threefold constructed as the conifold resolution of the fiber product of a generic rational elliptic surface with itself, which was first studied by Bryan. We compute Katz’s genus 0 Gopakumar–Vafa invariants of fiber curve classes on the Banana manifold $X_{{\\text{Ban}}}\\to \\mathbf{P} ^1$. The weak Jacobi form of weight −2 and index 1 is the associated generating function for these genus 0 Gopakumar–Vafa invariants. The invariants are shown to be an actual count of structure sheaves of certain possibly non-reduced genus 0 curves on the universal cover of the singular fibers of $X_{{\\text{Ban}}}\\to\\mathbf{P}^1$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAB026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Banana manifold $X_{{\text{Ban}}}$ is a compact Calabi–Yau threefold constructed as the conifold resolution of the fiber product of a generic rational elliptic surface with itself, which was first studied by Bryan. We compute Katz’s genus 0 Gopakumar–Vafa invariants of fiber curve classes on the Banana manifold $X_{{\text{Ban}}}\to \mathbf{P} ^1$. The weak Jacobi form of weight −2 and index 1 is the associated generating function for these genus 0 Gopakumar–Vafa invariants. The invariants are shown to be an actual count of structure sheaves of certain possibly non-reduced genus 0 curves on the universal cover of the singular fibers of $X_{{\text{Ban}}}\to\mathbf{P}^1$.
香蕉流形的0 Gopakumar-Vafa不变量属
Banana流形$X_{\text{Ban}}$是一个紧的Calabi–Yau三重,由Bryan首次研究,它被构造为具有自身的一般有理椭圆表面的纤维乘积的针叶树分辨率。我们计算Banana流形$X_{\text{Ban}}\ to \mathbf{P}^1$上纤维曲线类的Katz亏格0 Gopakumar–Vafa不变量。权重−2和索引1的弱Jacobi形式是这些亏格0 Gopakumar–Vafa不变量的相关生成函数。不变量被证明是$X_{\text{Ban}}\ to \mathbf{P}^1$的奇异纤维的泛覆盖上某些可能非约化亏格0曲线的结构簇的实际计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信