Logistic Regression Under Sparse Data Conditions

Q3 Mathematics
D. Walker, Thomas J. Smith
{"title":"Logistic Regression Under Sparse Data Conditions","authors":"D. Walker, Thomas J. Smith","doi":"10.22237/JMASM/1604190660","DOIUrl":null,"url":null,"abstract":"The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":" ","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1604190660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.
稀疏数据条件下的逻辑回归
稀疏数据条件的影响在逻辑回归中的一个或多个预测变量中进行了检验,并评估了Firth(1993)程序在减少潜在参数估计偏差方面的有效性。结果表明,在小样本量的情况下,二元预测器的稀疏性引入了大量的偏差,而Firth程序可以有效地纠正这种偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信