{"title":"Gradient estimates for a nonlinear parabolic equation with Dirichlet boundary condition","authors":"Xu-Yang Fu, Jia-Yong Wu","doi":"10.2996/kmj/kmj45106","DOIUrl":null,"url":null,"abstract":". In this paper, we prove Souplet-Zhang type gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces with the compact boundary under the Dirichlet boundary condition when the Bakry-Emery Ricci tensor and the weighted mean curvature are both bounded below. As an application, we obtain a new Liouville type result for some space-time functions on such smooth metric measure spaces. These results generalize previous linear equations to a nonlinear case.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/kmj45106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
. In this paper, we prove Souplet-Zhang type gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces with the compact boundary under the Dirichlet boundary condition when the Bakry-Emery Ricci tensor and the weighted mean curvature are both bounded below. As an application, we obtain a new Liouville type result for some space-time functions on such smooth metric measure spaces. These results generalize previous linear equations to a nonlinear case.
期刊介绍:
Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.