Interpolation of nonlinear integral Urysohn operators in net spaces

IF 0.7 Q2 MATHEMATICS
A. H. Kalidolday, E. Nursultanov
{"title":"Interpolation of nonlinear integral Urysohn operators in net spaces","authors":"A. H. Kalidolday, E. Nursultanov","doi":"10.31489/2022m1/66-73","DOIUrl":null,"url":null,"abstract":"In this paper, we study the interpolation properties of the net spaces N_p,q(M), in the case when M is a sufficiently general arbitrary system of measurable subsets from R^n. The integral Urysohn operator is considered. This operator generalizes all linear, integral operators, and non-linear integral operators. The Urysohn operator is not a quasilinear or subadditive operator. Therefore, the classical interpolation theorems for these operators do not hold. A certain analogue of the Marcinkiewicz-type interpolation theorem for this class of operators is obtained. This theorem allows to obtain, in a sense, a strong estimate for Urysohn operators in net spaces from weak estimates for these operators in net spaces with local nets. For example, in order for the Urysohn integral operator in a net space, where the net is the set of all balls in R^n, it is sufficient for it to be of weak type for net spaces, where the net is concentric balls.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m1/66-73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the interpolation properties of the net spaces N_p,q(M), in the case when M is a sufficiently general arbitrary system of measurable subsets from R^n. The integral Urysohn operator is considered. This operator generalizes all linear, integral operators, and non-linear integral operators. The Urysohn operator is not a quasilinear or subadditive operator. Therefore, the classical interpolation theorems for these operators do not hold. A certain analogue of the Marcinkiewicz-type interpolation theorem for this class of operators is obtained. This theorem allows to obtain, in a sense, a strong estimate for Urysohn operators in net spaces from weak estimates for these operators in net spaces with local nets. For example, in order for the Urysohn integral operator in a net space, where the net is the set of all balls in R^n, it is sufficient for it to be of weak type for net spaces, where the net is concentric balls.
网络空间中非线性积分Urysohn算子的插值
本文研究了当M是由R^n的可测子集组成的一个足够一般的任意系统时,净空间N_p,q(M)的插值性质。考虑积分Urysohn算子。这个算子推广了所有的线性、积分和非线性积分算子。Urysohn算子不是拟线性或次加性算子。因此,这些算子的经典插值定理不成立。得到了这类算子的marcinkiewicz型插值定理的一个类似形式。从某种意义上说,这个定理允许从具有局部网的网空间中Urysohn算子的弱估计得到网空间中Urysohn算子的强估计。例如,对于网空间中的Urysohn积分算子,当网是R^n中所有球的集合时,对于网空间,当网是同心球时,它是弱型就足够了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信