Interactions between densely grafted molten polymer brushes: Scaling theories versus molecular simulations

IF 1.4 Q3 PHYSICS, MULTIDISCIPLINARY
A. Erbaş
{"title":"Interactions between densely grafted molten polymer brushes: Scaling theories versus molecular simulations","authors":"A. Erbaş","doi":"10.3906/FIZ-2010-5","DOIUrl":null,"url":null,"abstract":"Using molecular dynamics simulations and scaling arguments, we analyzed the interactions between two identical molten polymer brushes intermediately and strongly compressed towards each other at melt conditions. The width of the overlap region, in which monomers of the linear chains composing the two brushes interact, increases as the polymer-grafted surfaces are brought closer. If two-brush coated surfaces are as close as the characteristics size of the grafted chains, the overlap region is directly controlled by intersurface distance. At intermediate compression, the width of the overlap region scales with the end-to-end size of chain sections within the overlap region. This result is consistent with the scaling regimes in the literature. As the intersurface distance is decreased, the number fraction of chains (chains with their free ends in the overlap region) decreases with a power law. Our results could be useful for studies on tribological behavior of polymer-grafted surfaces as well as for the self-assembly of polymer coated colloids.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":"45 1","pages":"1-12"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/FIZ-2010-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Using molecular dynamics simulations and scaling arguments, we analyzed the interactions between two identical molten polymer brushes intermediately and strongly compressed towards each other at melt conditions. The width of the overlap region, in which monomers of the linear chains composing the two brushes interact, increases as the polymer-grafted surfaces are brought closer. If two-brush coated surfaces are as close as the characteristics size of the grafted chains, the overlap region is directly controlled by intersurface distance. At intermediate compression, the width of the overlap region scales with the end-to-end size of chain sections within the overlap region. This result is consistent with the scaling regimes in the literature. As the intersurface distance is decreased, the number fraction of chains (chains with their free ends in the overlap region) decreases with a power law. Our results could be useful for studies on tribological behavior of polymer-grafted surfaces as well as for the self-assembly of polymer coated colloids.
密集接枝熔融聚合物刷之间的相互作用:缩放理论与分子模拟
利用分子动力学模拟和尺度参数,我们分析了两个相同的熔融聚合物刷在熔融条件下相互之间的相互作用。组成两个电刷的线性链单体相互作用的重叠区域的宽度随着聚合物接枝表面的靠近而增加。如果两刷涂覆表面与接枝链的特征尺寸相近,则重叠区域直接受表面间距控制。在中等压缩时,重叠区域的宽度与重叠区域内链段的端到端大小成正比。这一结果与文献中的标度机制一致。随着界面距离的减小,链(自由端位于重叠区域的链)的数量分数呈幂律递减。我们的研究结果可用于聚合物接枝表面的摩擦学行为研究以及聚合物包覆胶体的自组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Physics
Turkish Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
0.00%
发文量
8
期刊介绍: The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信