{"title":"Improved feature point extraction method of ORB-SLAM2 dense map","authors":"Lin Zhang, Yingjie Zhang","doi":"10.1108/aa-03-2022-0032","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.\n\n\nDesign/methodology/approach\nThis paper proposes an improved ORB-SLAM2 dense map optimization algorithm. This algorithm consists of three parts: ORB feature extraction based on improved FAST-12, feature point extraction with progressive sample consensus (PROSAC) and the dense ORB-SLAM2 algorithm for mapping. Here, the dense ORB-SLAM2 algorithm adds LoopClose optimization thread and dense point cloud map and octree map construction thread. The dense map is computationally expensive and occupies a large amount of memory. Therefore, the proposed method takes higher efficiency, voxel filtering can reduce the memory while ensuring the density of the map and then use the octree format to store the map to further reduce memory.\n\n\nFindings\nThe improved ORB-SLAM2 algorithm is compared with the original ORB-SLAM2 algorithm, and the experimental results show that the map through improved ORB-SLAM2 can be directly used in navigation process with higher accuracy, shorter tracking time and smaller memory.\n\n\nOriginality/value\nThe improved ORB-SLAM2 algorithm can obtain a dense environment map, which ensures the integrity of data. The comparisons of FAST-12 and improved FAST-12, RANSAC and PROSAC prove that the improved FAST-12 and PROSAC both make the feature point extraction process faster and more accurate. Voxel filter helps to take small storage memory and low computation cost, and octree map construction on the dense map can be directly used in navigation.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-03-2022-0032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Purpose
This paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.
Design/methodology/approach
This paper proposes an improved ORB-SLAM2 dense map optimization algorithm. This algorithm consists of three parts: ORB feature extraction based on improved FAST-12, feature point extraction with progressive sample consensus (PROSAC) and the dense ORB-SLAM2 algorithm for mapping. Here, the dense ORB-SLAM2 algorithm adds LoopClose optimization thread and dense point cloud map and octree map construction thread. The dense map is computationally expensive and occupies a large amount of memory. Therefore, the proposed method takes higher efficiency, voxel filtering can reduce the memory while ensuring the density of the map and then use the octree format to store the map to further reduce memory.
Findings
The improved ORB-SLAM2 algorithm is compared with the original ORB-SLAM2 algorithm, and the experimental results show that the map through improved ORB-SLAM2 can be directly used in navigation process with higher accuracy, shorter tracking time and smaller memory.
Originality/value
The improved ORB-SLAM2 algorithm can obtain a dense environment map, which ensures the integrity of data. The comparisons of FAST-12 and improved FAST-12, RANSAC and PROSAC prove that the improved FAST-12 and PROSAC both make the feature point extraction process faster and more accurate. Voxel filter helps to take small storage memory and low computation cost, and octree map construction on the dense map can be directly used in navigation.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.