Discrete curvatures for planar curves based on Archimedes’ duality principle

Pub Date : 2022-04-01 DOI:10.1515/rnam-2022-0007
V. Garanzha, L. Kudryavtseva, Dmitry A. Makarov
{"title":"Discrete curvatures for planar curves based on Archimedes’ duality principle","authors":"V. Garanzha, L. Kudryavtseva, Dmitry A. Makarov","doi":"10.1515/rnam-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract We introduce discrete curvatures for planar curves based on the construction of sequences of pairs of mutually dual polylines. For piecewise-regular curves consisting of a finite number of fragments of regular generalized spirals with definite (positive or negative) curvatures our discrete curvatures approximate the exact averaged curvature from below and from above. In order to derive these estimates one should provide a distance function allowing to compute the closest point on the curve for an arbitrary point on the plane.With refinement of the polylines, the averaged curvature over refined curve segments converges to the pointwise values of the curvature and, thus, we obtain a good and stable local approximation of the curvature. For the important engineering case when the curve is approximated only by the inscribed (primal) polyline and the exact distance function is not available, we provide a comparative analysis for several techniques allowing to build dual polylines and discrete curvatures and evaluate their ability to create lower and upper estimates for the averaged curvature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We introduce discrete curvatures for planar curves based on the construction of sequences of pairs of mutually dual polylines. For piecewise-regular curves consisting of a finite number of fragments of regular generalized spirals with definite (positive or negative) curvatures our discrete curvatures approximate the exact averaged curvature from below and from above. In order to derive these estimates one should provide a distance function allowing to compute the closest point on the curve for an arbitrary point on the plane.With refinement of the polylines, the averaged curvature over refined curve segments converges to the pointwise values of the curvature and, thus, we obtain a good and stable local approximation of the curvature. For the important engineering case when the curve is approximated only by the inscribed (primal) polyline and the exact distance function is not available, we provide a comparative analysis for several techniques allowing to build dual polylines and discrete curvatures and evaluate their ability to create lower and upper estimates for the averaged curvature.
分享
查看原文
基于阿基米德对偶原理的平面曲线的离散曲率
摘要通过构造相互对偶的折线对序列,引入平面曲线的离散曲率。对于由有限数量的具有确定(正或负)曲率的正则广义螺旋碎片组成的分段规则曲线,我们的离散曲率从下到上近似于精确的平均曲率。为了得到这些估计值,我们应该提供一个距离函数来计算平面上任意点在曲线上的最近点。通过对折线的精化,精化曲线段上的平均曲率收敛于曲率的逐点值,从而得到了曲率的良好稳定的局部逼近。对于重要的工程情况,当曲线仅由内切(原始)折线近似且无法获得精确的距离函数时,我们提供了几种允许构建双折线和离散曲率的技术的比较分析,并评估了它们创建平均曲率的下限和上限估计的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信