Hadi Alizadeh, Didem Gözüpek, Gülnaz Boruzanli Ekinci
{"title":"(C3, C4, C5, C7)-Free Almost Well-Dominated Graphs","authors":"Hadi Alizadeh, Didem Gözüpek, Gülnaz Boruzanli Ekinci","doi":"10.7151/dmgt.2331","DOIUrl":null,"url":null,"abstract":"Abstract The domination gap of a graph G is defined as the di erence between the maximum and minimum cardinalities of a minimal dominating set in G. The term well-dominated graphs referring to the graphs with domination gap zero, was first introduced by Finbow et al. [Well-dominated graphs: A collection of well-covered ones, Ars Combin. 25 (1988) 5–10]. In this paper, we focus on the graphs with domination gap one which we term almost well-dominated graphs. While the results by Finbow et al. have implications for almost well-dominated graphs with girth at least 8, we extend these results to (C3, C4, C5, C7)-free almost well-dominated graphs by giving a complete structural characterization for such graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The domination gap of a graph G is defined as the di erence between the maximum and minimum cardinalities of a minimal dominating set in G. The term well-dominated graphs referring to the graphs with domination gap zero, was first introduced by Finbow et al. [Well-dominated graphs: A collection of well-covered ones, Ars Combin. 25 (1988) 5–10]. In this paper, we focus on the graphs with domination gap one which we term almost well-dominated graphs. While the results by Finbow et al. have implications for almost well-dominated graphs with girth at least 8, we extend these results to (C3, C4, C5, C7)-free almost well-dominated graphs by giving a complete structural characterization for such graphs.