{"title":"On the \n \n EO\n $\\mathrm{EO}$\n -orientability of vector bundles","authors":"P. Bhattacharya, H. Chatham","doi":"10.1112/topo.12265","DOIUrl":null,"url":null,"abstract":"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories. The <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories are higher height analogues of real <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathrm{K}$</annotation>\n </semantics></math>-theory <math>\n <semantics>\n <mi>KO</mi>\n <annotation>$\\mathrm{KO}$</annotation>\n </semantics></math>. For each <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theory, we prove that the direct sum of <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> copies of any vector bundle is <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-orientable for some specific integer <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our method involves understanding the action of an order <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathrm{E}$</annotation>\n </semantics></math>-theory of <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math> on all <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study the orientability of vector bundles with respect to a family of cohomology theories called -theories. The -theories are higher height analogues of real -theory . For each -theory, we prove that the direct sum of copies of any vector bundle is -orientable for some specific integer . Using a splitting principal, we reduce to the case of the canonical line bundle over . Our method involves understanding the action of an order subgroup of the Morava stabilizer group on the Morava -theory of . Our calculations have another application: We determine the homotopy type of the -Tate spectrum associated to the trivial action of on all -theories.