On the EO $\mathrm{EO}$ -orientability of vector bundles

Pub Date : 2022-09-19 DOI:10.1112/topo.12265
P. Bhattacharya, H. Chatham
{"title":"On the \n \n EO\n $\\mathrm{EO}$\n -orientability of vector bundles","authors":"P. Bhattacharya,&nbsp;H. Chatham","doi":"10.1112/topo.12265","DOIUrl":null,"url":null,"abstract":"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories. The <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories are higher height analogues of real <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathrm{K}$</annotation>\n </semantics></math>-theory <math>\n <semantics>\n <mi>KO</mi>\n <annotation>$\\mathrm{KO}$</annotation>\n </semantics></math>. For each <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theory, we prove that the direct sum of <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> copies of any vector bundle is <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-orientable for some specific integer <math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our method involves understanding the action of an order <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathrm{E}$</annotation>\n </semantics></math>-theory of <math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$\\mathbb {CP}^{\\infty }$</annotation>\n </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math>-Tate spectrum associated to the trivial action of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathrm{S}^{1}$</annotation>\n </semantics></math> on all <math>\n <semantics>\n <mi>EO</mi>\n <annotation>$\\mathrm{EO}$</annotation>\n </semantics></math>-theories.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the orientability of vector bundles with respect to a family of cohomology theories called EO $\mathrm{EO}$ -theories. The EO $\mathrm{EO}$ -theories are higher height analogues of real K $\mathrm{K}$ -theory KO $\mathrm{KO}$ . For each EO $\mathrm{EO}$ -theory, we prove that the direct sum of i $i$ copies of any vector bundle is EO $\mathrm{EO}$ -orientable for some specific integer i $i$ . Using a splitting principal, we reduce to the case of the canonical line bundle over CP $\mathbb {CP}^{\infty }$ . Our method involves understanding the action of an order p $p$ subgroup of the Morava stabilizer group on the Morava E $\mathrm{E}$ -theory of CP $\mathbb {CP}^{\infty }$ . Our calculations have another application: We determine the homotopy type of the S 1 $\mathrm{S}^{1}$ -Tate spectrum associated to the trivial action of S 1 $\mathrm{S}^{1}$ on all EO $\mathrm{EO}$ -theories.

分享
查看原文
论向量束的EO $\ mathm {EO}$ -可定向性
我们研究了向量束在上同调理论(EO $\mathrm{EO}$ -理论)中的可定向性。EO $\mathrm{EO}$ -理论是真实K $\mathrm{K}$ -理论KO $\mathrm{KO}$的更高高度的类似物。对于每一个EO $\mathrm{EO}$ -理论,我们证明了对于特定整数i $i$,任意向量束的i $i$拷贝的直接和是EO $\mathrm{EO}$ -可定向的。利用分裂原理,我们简化到CP∞上正则线束$\mathbb {CP}^{\infty }$的情况。我们的方法包括理解Morava稳定群的p阶$p$子群对Morava E $\mathrm{E}$ - CP∞理论$\mathbb {CP}^{\infty }$的作用。我们的计算还有另一个应用:我们确定了s1 $\mathrm{S}^{1}$ -Tate谱在所有EO $\mathrm{EO}$ -理论上与s1的平凡作用$\mathrm{S}^{1}$相关的同伦类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信