Real hypersurfaces in the complex hyperbolic quadric with Reeb invariant Ricci tensor

IF 0.6 4区 数学 Q3 MATHEMATICS
Doo Hyun Hwang, Hyunjin Lee, Y. Suh
{"title":"Real hypersurfaces in the complex hyperbolic quadric with Reeb invariant Ricci tensor","authors":"Doo Hyun Hwang, Hyunjin Lee, Y. Suh","doi":"10.33044/revuma.1975","DOIUrl":null,"url":null,"abstract":". We first give the notion of Reeb invariant Ricci tensor for real hypersurfaces M in the complex quadric Q m ∗ = SO 02 ,m /SO 2 SO m , which is defined by L ξ Ric = 0, where Ric denotes the Ricci tensor of M in Q m ∗ , and L ξ the Lie derivative along the direction of the Reeb vector field ξ = − JN . Next we give a complete classification of real hypersurfaces in the complex hyperbolic quadric Q m ∗ = SO 02 ,m /SO 2 SO m with Reeb invariant Ricci tensor.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1975","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. We first give the notion of Reeb invariant Ricci tensor for real hypersurfaces M in the complex quadric Q m ∗ = SO 02 ,m /SO 2 SO m , which is defined by L ξ Ric = 0, where Ric denotes the Ricci tensor of M in Q m ∗ , and L ξ the Lie derivative along the direction of the Reeb vector field ξ = − JN . Next we give a complete classification of real hypersurfaces in the complex hyperbolic quadric Q m ∗ = SO 02 ,m /SO 2 SO m with Reeb invariant Ricci tensor.
具有Reeb不变Ricci张量的复双曲二次曲面的实超曲面
. 我们首先给出复二次曲面Q M∗= so02, M / so2som中实超曲面M的Reeb不变Ricci张量的概念,它由L ξ Ric = 0定义,其中Ric表示M在Q M∗中的Ricci张量,L ξ表示沿Reeb向量场ξ = - JN方向的李氏导数。然后给出复双曲二次曲面Q m∗= so02,m / so2som中具有Reeb不变Ricci张量的实超曲面的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信