Li–Yau gradient estimates for curvature flows in positively curved manifolds

IF 0.6 Q4 MATHEMATICS, APPLIED
Paul Bryan, Heiko Kroner, Julian Scheuer
{"title":"Li–Yau gradient estimates for curvature flows in positively curved manifolds","authors":"Paul Bryan, Heiko Kroner, Julian Scheuer","doi":"10.4310/MAA.2020.v27.n4.a2","DOIUrl":null,"url":null,"abstract":"We prove differential Harnack inequalities for flows of strictly convex hypersurfaces by powers $p$, $0<p<1$, of the mean curvature in Einstein manifolds with a positive lower bound on the sectional curvature. We assume that this lower bound is sufficiently large compared to the derivatives of the curvature tensor of the ambient space and that the mean curvature of the initial hypersurface is sufficiently large compared to the ambient geometry. We also obtain some new Harnack inequalities for more general curvature flows in the sphere, as well as a monotonicity estimate for the mean curvature flow in non-negatively curved, locally symmetric spaces.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2020.v27.n4.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We prove differential Harnack inequalities for flows of strictly convex hypersurfaces by powers $p$, $0
正弯曲流形中曲率流的Li-Yau梯度估计
我们用截面曲率为正下界的Einstein流形中平均曲率的幂$p$,$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信