{"title":"Correspondance de Langlands locale $p$-adique\net anneaux de Kisin","authors":"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł","doi":"10.4064/aa220520-24-4","DOIUrl":null,"url":null,"abstract":"We use a ${\\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\\mathrm {GL}}_2({\\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-M\\'ezard conjecture in the supercuspidal case.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220520-24-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use a ${\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-M\'ezard conjecture in the supercuspidal case.
我们使用${\mathrm{GL}}_2({\mathbf Q}_p)$的${\math cal B}$adic完备和$p$adic局部Langlands对应关系,直接从经典Langlands相应关系中给出Kisin环的构造和所附的通用Galois表示(在维度2中和对于${\mathebf Q}_p$)。这特别给出了在超悬铃木情况下几何Breuil-M’zard猜想的统一证明。