Modular Matrix Multiplication on GPU for Polynomial System Solving

IF 0.4 Q4 MATHEMATICS, APPLIED
Jérémy Berthomieu, S. Graillat, Dimitri Lesnoff, Théo Mary
{"title":"Modular Matrix Multiplication on GPU for Polynomial System Solving","authors":"Jérémy Berthomieu, S. Graillat, Dimitri Lesnoff, Théo Mary","doi":"10.1145/3614408.3614411","DOIUrl":null,"url":null,"abstract":"The bottleneck of the SPARSE-FGLM algorithm for Gröbner bases change of order is an iterative matrix - tall and skinny matrix product over a finite prime field. Our contribution is twofold. First, we port existing CPU-only algorithms for matrix products over prime fields to GPU architectures, and carry out a performance analysis of our implementation that shows that we can nearly achieve the maximum theoretical throughput of the hardware. Second, existing CPU-only algorithms could not handle primes with more than 26 bits, other than the GMP-based implementation in FLINT; we overcome this limitation by proposing an efficient multiword matrix product algorithm that can deal with primes with at most 35 bits; we benchmarked it on GPU.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"57 1","pages":"35 - 38"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3614408.3614411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The bottleneck of the SPARSE-FGLM algorithm for Gröbner bases change of order is an iterative matrix - tall and skinny matrix product over a finite prime field. Our contribution is twofold. First, we port existing CPU-only algorithms for matrix products over prime fields to GPU architectures, and carry out a performance analysis of our implementation that shows that we can nearly achieve the maximum theoretical throughput of the hardware. Second, existing CPU-only algorithms could not handle primes with more than 26 bits, other than the GMP-based implementation in FLINT; we overcome this limitation by proposing an efficient multiword matrix product algorithm that can deal with primes with at most 35 bits; we benchmarked it on GPU.
用于多项式系统求解的GPU上的模矩阵乘法
求解Gröbner基阶变化的稀疏- fglm算法的瓶颈是在有限素域上的迭代矩阵-高-瘦矩阵积。我们的贡献是双重的。首先,我们将现有的纯cpu算法移植到GPU架构上,并对我们的实现进行性能分析,表明我们几乎可以实现硬件的最大理论吞吐量。其次,除了FLINT中基于gmp的实现之外,现有的仅cpu算法无法处理大于26位的素数;我们通过提出一种有效的多字矩阵积算法来克服这一限制,该算法可以处理最多35位的素数;我们在GPU上进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信