Shifted Jacobi collocation method for Volterra-Fredholm integral equation

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Mohamed
{"title":"Shifted Jacobi collocation method for Volterra-Fredholm integral equation","authors":"A. Mohamed","doi":"10.22034/CMDE.2021.38146.1680","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the approximate numerical solution for the Volterra-Fredholm integral equation (V-FIE) using the shifted Jacobi collocation (SJC) method. This method depends on the operational matrices. We present some properties of the shifted Jacobi polynomials. These properties together with the shifted Jacobi polynomials transform the Volterra-Fredholm integral equation into a system of algebraic equations in the expansion coefficients of the solution. We discuss the convergence and error analysis of the shifted Jacobi polynomials in detail. The efficiency of this method is verified through numerical examples and compared with others.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.38146.1680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we evaluate the approximate numerical solution for the Volterra-Fredholm integral equation (V-FIE) using the shifted Jacobi collocation (SJC) method. This method depends on the operational matrices. We present some properties of the shifted Jacobi polynomials. These properties together with the shifted Jacobi polynomials transform the Volterra-Fredholm integral equation into a system of algebraic equations in the expansion coefficients of the solution. We discuss the convergence and error analysis of the shifted Jacobi polynomials in detail. The efficiency of this method is verified through numerical examples and compared with others.
Volterra-Fredholm积分方程的移位Jacobi配点法
本文利用移位Jacobi配置(SJC)方法求出了Volterra-Fredholm积分方程(V-FIE)的近似数值解。这种方法依赖于运算矩阵。给出了移位雅可比多项式的一些性质。这些性质与移位的雅可比多项式一起将Volterra-Fredholm积分方程转化为解的展开系数的代数方程组。详细讨论了移位雅可比多项式的收敛性和误差分析。通过数值算例验证了该方法的有效性,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信