M. Al-Osta, H. Saidi, A. Tounsi, S. Al-Dulaijan, M. Al-Zahrani, A. Sharif, A. Tounsi
{"title":"Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model","authors":"M. Al-Osta, H. Saidi, A. Tounsi, S. Al-Dulaijan, M. Al-Zahrani, A. Sharif, A. Tounsi","doi":"10.12989/SSS.2021.28.4.499","DOIUrl":null,"url":null,"abstract":"In this project, the hygro-thermo-mechanical bending behavior of perfect and imperfect advanced functionally graded (AFG) ceramic-metal plates is analytically investigated using an integral plate model for the first time. The plate is assumed to be supported by a two-parameter elastic foundation. Because of the technical problems encountered in the manufacture of AFG, porosities and micro-voids can occur in AFG specimens, which can result in reduced density and strength of materials. Thus, due to the presence of porosity, a modified rule of mixture is adopted to predict the material properties of the AFG plates. The governing equations are deduced by adopting the \"principle of virtual work\" and an integral plate model. The analytical Navier's method is considered to solve the obtained differential equations for simply supported AFG porous plate. The results obtained are checked by comparing them for non-porous and porous AFG plates with those available in the open literature. Finally, this work will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"28 1","pages":"499"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.4.499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 38
Abstract
In this project, the hygro-thermo-mechanical bending behavior of perfect and imperfect advanced functionally graded (AFG) ceramic-metal plates is analytically investigated using an integral plate model for the first time. The plate is assumed to be supported by a two-parameter elastic foundation. Because of the technical problems encountered in the manufacture of AFG, porosities and micro-voids can occur in AFG specimens, which can result in reduced density and strength of materials. Thus, due to the presence of porosity, a modified rule of mixture is adopted to predict the material properties of the AFG plates. The governing equations are deduced by adopting the "principle of virtual work" and an integral plate model. The analytical Navier's method is considered to solve the obtained differential equations for simply supported AFG porous plate. The results obtained are checked by comparing them for non-porous and porous AFG plates with those available in the open literature. Finally, this work will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.