{"title":"Horizon saddle connections and Morse–Smale dynamics of dilation surfaces","authors":"Guillaume Tahar","doi":"10.3934/jmd.2023012","DOIUrl":null,"url":null,"abstract":"Dilation surfaces are generalizations of translation surfaces where the transition maps of the atlas are translations and homotheties with a positive ratio. In contrast with translation surfaces, the directional flow on dilation surfaces may contain trajectories accumulating on a limit cycle. Such a limit cycle is called hyperbolic because it induces a nontrivial homothety. It has been conjectured that a dilation surface with no actual hyperbolic closed geodesic is in fact a translation surface. Assuming that a dilation surface contains a horizon saddle connection, we prove that the directions of its hyperbolic closed geodesics form a dense subset of $\\mathbb{S}^{1}$. We also prove that a dilation surface satisfies the latter property if and only if its directional flow is Morse-Smale in an open dense subset of $\\mathbb{S}^{1}$.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Dilation surfaces are generalizations of translation surfaces where the transition maps of the atlas are translations and homotheties with a positive ratio. In contrast with translation surfaces, the directional flow on dilation surfaces may contain trajectories accumulating on a limit cycle. Such a limit cycle is called hyperbolic because it induces a nontrivial homothety. It has been conjectured that a dilation surface with no actual hyperbolic closed geodesic is in fact a translation surface. Assuming that a dilation surface contains a horizon saddle connection, we prove that the directions of its hyperbolic closed geodesics form a dense subset of $\mathbb{S}^{1}$. We also prove that a dilation surface satisfies the latter property if and only if its directional flow is Morse-Smale in an open dense subset of $\mathbb{S}^{1}$.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.