Generalization of the Harmonic Weighted Mean Via Pythagorean Invariance Identity and Application

IF 0.4 Q4 MATHEMATICS
P. Kahlig, J. Matkowski
{"title":"Generalization of the Harmonic Weighted Mean Via Pythagorean Invariance Identity and Application","authors":"P. Kahlig, J. Matkowski","doi":"10.2478/amsil-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract Under some simple conditions on the real functions f and g defined on an interval I ⊂ (0, ∞), the two-place functions Af (x, y) = f (x) + y − f (y) and Gg(x,y)=g(x)g(y)y {G_g}\\left({x,y} \\right) = {{g\\left(x \\right)} \\over {g\\left(y \\right)}}y generalize, respectively, A and G, the classical weighted arithmetic and geometric means. In this note, basing on the invariance identity G ∘ (H, A) = G (equivalent to the Pythagorean harmony proportion), a suitable weighted extension Hf,g of the classical harmonic mean H is introduced. An open problem concerning the symmetry of Hf,g is proposed. As an application a method of effective solving of some functional equations involving means is presented.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"104 - 122"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Under some simple conditions on the real functions f and g defined on an interval I ⊂ (0, ∞), the two-place functions Af (x, y) = f (x) + y − f (y) and Gg(x,y)=g(x)g(y)y {G_g}\left({x,y} \right) = {{g\left(x \right)} \over {g\left(y \right)}}y generalize, respectively, A and G, the classical weighted arithmetic and geometric means. In this note, basing on the invariance identity G ∘ (H, A) = G (equivalent to the Pythagorean harmony proportion), a suitable weighted extension Hf,g of the classical harmonic mean H is introduced. An open problem concerning the symmetry of Hf,g is proposed. As an application a method of effective solving of some functional equations involving means is presented.
调和加权均值的毕达哥拉斯不变性恒等式推广及其应用
在区间I∧(0,∞)上定义的实数函数f和g的一些简单条件下,二维函数Af (x,y)= f (x) + y−f (y)和Gg(x,y)=g(x)g(y)y {G_g}\left({x,y} \right) = {{g\left(x \right)} / {g\left(y \right)}}分别推广了经典加权算术和几何均值A和g。本文根据不变性恒等式G°(H, A) = G(等价于毕达哥拉斯调和比例),引入经典调和平均值H的一个合适的加权推广Hf, G。提出了Hf,g对称性的一个开放问题。作为一种应用,本文给出了一种有效求解一些涉及均值的泛函方程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信