Optimal Design of District Heating Networks with Distributed Thermal Energy Storages – Method and Case Study

Q1 Social Sciences
J. Röder, Benedikt Meyer, Uwe Krien, Joris Zimmermann, T. Stührmann, E. Zondervan
{"title":"Optimal Design of District Heating Networks with Distributed Thermal Energy Storages – Method and Case Study","authors":"J. Röder, Benedikt Meyer, Uwe Krien, Joris Zimmermann, T. Stührmann, E. Zondervan","doi":"10.5278/IJSEPM.6248","DOIUrl":null,"url":null,"abstract":"District heating systems have a great potential for supporting the energy transition towards a renewa-ble energy system, and could also be an option in less dense populated urban districts and rural communities with a medium heat density. In these cases, distributed thermal energy storages at each building could improve the overall system performance by enabling a leaner sizing of the piping sys-tems due to peak-shaving and reducing the heat losses of the distribution grid. But how can distribut-ed storages already be considered within the design of the district heating network itself? And what are the quantitative benefits with respect to the district heating piping system? This paper answers these questions and presents an open-source optimisation approach for designing the piping network of a district heating system. This includes the optimisation of the network topology, the dimensioning of the pipes, and the consideration of distributed storage options. A linear mixed-integer program-ming model with a high spatial resolution including heat storages at each customer has been imple-mented. Within the QUARREE100 project, the approach is demonstrated on a real world case of an existing district with 129 houses in the provincial town Heide in Northern Germany. In the scenario with 1 m³ heat storages, the thermal losses of the district heating network can be reduced by 10.2 % and the total costs by 13.1 %.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5278/IJSEPM.6248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 15

Abstract

District heating systems have a great potential for supporting the energy transition towards a renewa-ble energy system, and could also be an option in less dense populated urban districts and rural communities with a medium heat density. In these cases, distributed thermal energy storages at each building could improve the overall system performance by enabling a leaner sizing of the piping sys-tems due to peak-shaving and reducing the heat losses of the distribution grid. But how can distribut-ed storages already be considered within the design of the district heating network itself? And what are the quantitative benefits with respect to the district heating piping system? This paper answers these questions and presents an open-source optimisation approach for designing the piping network of a district heating system. This includes the optimisation of the network topology, the dimensioning of the pipes, and the consideration of distributed storage options. A linear mixed-integer program-ming model with a high spatial resolution including heat storages at each customer has been imple-mented. Within the QUARREE100 project, the approach is demonstrated on a real world case of an existing district with 129 houses in the provincial town Heide in Northern Germany. In the scenario with 1 m³ heat storages, the thermal losses of the district heating network can be reduced by 10.2 % and the total costs by 13.1 %.
分布式蓄热区域供热网络的优化设计——方法与案例研究
区域供暖系统在支持能源向可再生能源系统过渡方面具有巨大潜力,在人口密度较低的城市地区和中等热密度的农村社区也是一种选择。在这些情况下,由于调峰和减少配电网的热损失,每个建筑物的分布式热能存储可以通过简化管道系统的尺寸来提高整个系统的性能。但是,在区域供暖网络本身的设计中,如何考虑分布式存储?区域供暖管道系统的数量效益是什么?本文回答了这些问题,并提出了一种用于设计区域供暖系统管网的开源优化方法。这包括优化网络拓扑、确定管道尺寸以及考虑分布式存储选项。实现了一个具有高空间分辨率的线性混合整数规划ming模型,该模型包括每个客户的储热器。在QUARREE100项目中,该方法在德国北部省镇海德的一个现有地区的真实案例中进行了演示,该地区有129栋房屋。在1 m³储热的情况下,区域供热网络的热损失可以减少10.2%,总成本可以减少13.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Sustainable Energy Planning and Management
International Journal of Sustainable Energy Planning and Management Social Sciences-Geography, Planning and Development
CiteScore
7.60
自引率
0.00%
发文量
18
审稿时长
30 weeks
期刊介绍: The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信