Security and application of semi-quantum key distribution protocol for users with different quantum capabilities

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Chong-Qiang Ye, Jian Li, Xiu-Bo Chen, Yanyan Hou, Zhuo Wang
{"title":"Security and application of semi-quantum key distribution protocol for users with different quantum capabilities","authors":"Chong-Qiang Ye,&nbsp;Jian Li,&nbsp;Xiu-Bo Chen,&nbsp;Yanyan Hou,&nbsp;Zhuo Wang","doi":"10.1140/epjqt/s40507-023-00180-3","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-quantum protocols serve as a bridge between quantum users and “classical” users with limited quantum capabilities, providing support for application scenarios that cannot afford the excessively high cost of quantum resources. In this paper, we present a semi-quantum key distribution (SQKD) protocol based on Bell states and single particles, which is designed for key distribution between different types of users. The protocol enables simultaneous key distribution between quantum and classical users, as well as key establishment between two classical users. The security analysis demonstrates that the protocol can reach the same level of security as the full quantum protocol. Furthermore, we extrapolate the proposed protocol to other semi-quantum protocols, such as semi-quantum key agreement and semi-quantum private comparison protocols. Compared with previous similar ones, our SQKD protocol and its extended versions can fulfill the requirements of their respective counterparts individually. Therefore, our SQKD protocol has the potential for broader applications in practical scenarios.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00180-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00180-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-quantum protocols serve as a bridge between quantum users and “classical” users with limited quantum capabilities, providing support for application scenarios that cannot afford the excessively high cost of quantum resources. In this paper, we present a semi-quantum key distribution (SQKD) protocol based on Bell states and single particles, which is designed for key distribution between different types of users. The protocol enables simultaneous key distribution between quantum and classical users, as well as key establishment between two classical users. The security analysis demonstrates that the protocol can reach the same level of security as the full quantum protocol. Furthermore, we extrapolate the proposed protocol to other semi-quantum protocols, such as semi-quantum key agreement and semi-quantum private comparison protocols. Compared with previous similar ones, our SQKD protocol and its extended versions can fulfill the requirements of their respective counterparts individually. Therefore, our SQKD protocol has the potential for broader applications in practical scenarios.

不同量子能力用户的半量子密钥分发协议的安全性与应用
半量子协议作为量子用户与量子能力有限的“经典”用户之间的桥梁,为无法承受过高量子资源成本的应用场景提供支持。本文提出了一种基于贝尔态和单粒子的半量子密钥分发(SQKD)协议,用于不同类型用户之间的密钥分发。该协议可以同时在量子用户和经典用户之间分配密钥,以及在两个经典用户之间建立密钥。安全性分析表明,该协议可以达到与全量子协议相同的安全级别。此外,我们将所提出的协议外推到其他半量子协议,如半量子密钥协议和半量子私有比较协议。与以前的同类协议相比,我们的SQKD协议及其扩展版本可以单独满足各自对应协议的要求。因此,我们的SQKD协议在实际场景中具有更广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信