{"title":"Optimal Row-Column Designs","authors":"Zheng Zhou, Yongdao Zhou","doi":"10.1093/biomet/asac046","DOIUrl":null,"url":null,"abstract":"\n Row-column designs have been widely used in experiments involving double confounding. Among them, one that provides unconfounded estimation of all main effects and as many two-factor interactions as possible is preferred, and is called optimal. Most current work focuses on the construction of two-level row-column designs, while the corresponding optimality theory has been largely ignored. Moreover, most constructed designs contain at least one replicate of a full factorial design, which are not flexible as the number of factors increases. In this study, a theoretical framework is built up to evaluate the optimality of row-column designs with prime level. A method for constructing optimal row-column designs with prime level is proposed. Subsequently, optimal full factorial three-level row-column designs are constructed for any parameter combination. Optimal fractional factorial two-level and three-level row-column designs are also constructed for cost-saving.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Row-column designs have been widely used in experiments involving double confounding. Among them, one that provides unconfounded estimation of all main effects and as many two-factor interactions as possible is preferred, and is called optimal. Most current work focuses on the construction of two-level row-column designs, while the corresponding optimality theory has been largely ignored. Moreover, most constructed designs contain at least one replicate of a full factorial design, which are not flexible as the number of factors increases. In this study, a theoretical framework is built up to evaluate the optimality of row-column designs with prime level. A method for constructing optimal row-column designs with prime level is proposed. Subsequently, optimal full factorial three-level row-column designs are constructed for any parameter combination. Optimal fractional factorial two-level and three-level row-column designs are also constructed for cost-saving.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.