Electrode surfaces based on multiwall carbon nanotubes-chitosan composites validated in the detection of homocysteine biomarkers for cardiovascular disease risk monitoring
Suparerk Oonchit, B. Cherdhirunkorn, P. Tharabenjasin, N. Pabalan, Kumpol Chintanavilas, Robert S Marks, Yardnapar Parcharoen, C. Pechyen
{"title":"Electrode surfaces based on multiwall carbon nanotubes-chitosan composites validated in the detection of homocysteine biomarkers for cardiovascular disease risk monitoring","authors":"Suparerk Oonchit, B. Cherdhirunkorn, P. Tharabenjasin, N. Pabalan, Kumpol Chintanavilas, Robert S Marks, Yardnapar Parcharoen, C. Pechyen","doi":"10.2478/ebtj-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to modify screen-printed carbon micro-electrode surfaces by coating them with multiwall carbon-based nanotubes conjugated with chitosan and then validated the formed multiwall carbon-based nanotubes-chitosan coated screen printed carbon micro-electrode for the detection of homocysteine, a biomarker analyte known as a risk indicator in cardiovascular disease. The microstructure surface and crystallographic structure stability of the formed multiwall carbon-based nanotubes-chitosan obtained at formed multiwall carbon-based nanotubes per chitosan ratios of 1:1, 2:1, 3:1, and 4:1 were examined via field emission scanning electron microscopy, X-ray radiation, Raman spectroscopy, surface area and pore size, and thermogravimetric analyses. Homocysteine solutions at 30–100 µM were measured by cyclic voltammetry using the different formed multiwall carbon-based nanotubes-chitosan compositions as sensor electrodes. That with an optimal formed multiwall carbon-based nanotubes per chitosan ratio of 4:1 showed the highest crystallinity and electrical conductivity and gave a high coefficient of determination (R2 = 0.9036) between the homocysteine concentration and the oxidation current detection over an operating range of 30–100 µM. This new composite microelectrode for detecting homocysteine concentration makes it a promising candidate for clinical applications.","PeriodicalId":22379,"journal":{"name":"The EuroBiotech Journal","volume":"7 1","pages":"144 - 154"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EuroBiotech Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ebtj-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study aimed to modify screen-printed carbon micro-electrode surfaces by coating them with multiwall carbon-based nanotubes conjugated with chitosan and then validated the formed multiwall carbon-based nanotubes-chitosan coated screen printed carbon micro-electrode for the detection of homocysteine, a biomarker analyte known as a risk indicator in cardiovascular disease. The microstructure surface and crystallographic structure stability of the formed multiwall carbon-based nanotubes-chitosan obtained at formed multiwall carbon-based nanotubes per chitosan ratios of 1:1, 2:1, 3:1, and 4:1 were examined via field emission scanning electron microscopy, X-ray radiation, Raman spectroscopy, surface area and pore size, and thermogravimetric analyses. Homocysteine solutions at 30–100 µM were measured by cyclic voltammetry using the different formed multiwall carbon-based nanotubes-chitosan compositions as sensor electrodes. That with an optimal formed multiwall carbon-based nanotubes per chitosan ratio of 4:1 showed the highest crystallinity and electrical conductivity and gave a high coefficient of determination (R2 = 0.9036) between the homocysteine concentration and the oxidation current detection over an operating range of 30–100 µM. This new composite microelectrode for detecting homocysteine concentration makes it a promising candidate for clinical applications.