Honda–Tate theory for Shimura varieties

IF 2.3 1区 数学 Q1 MATHEMATICS
M. Kisin, Keerthi Madapusi Pera, S. Shin
{"title":"Honda–Tate theory for Shimura varieties","authors":"M. Kisin, Keerthi Madapusi Pera, S. Shin","doi":"10.1215/00127094-2021-0063","DOIUrl":null,"url":null,"abstract":"A Shimura variety of Hodge type is a moduli space for abelian varieties equipped with a certain collection of Hodge cycles. We show that the Newton strata on such varieties are non-empty provided the corresponding group G is quasi-split at p, confirming a conjecture of Fargues and Rapoport in this case. Under the same condition, we conjecture that every mod p isogeny class on such a variety contains the reduction of a special point. This is a refinement of Honda-Tate theory. We prove a large part of this conjecture for Shimura varieties of PEL type. Our results make no assumption on the availability of a good integral model for the Shimura variety. In particular, the group G may be ramified at p.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0063","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

Abstract

A Shimura variety of Hodge type is a moduli space for abelian varieties equipped with a certain collection of Hodge cycles. We show that the Newton strata on such varieties are non-empty provided the corresponding group G is quasi-split at p, confirming a conjecture of Fargues and Rapoport in this case. Under the same condition, we conjecture that every mod p isogeny class on such a variety contains the reduction of a special point. This is a refinement of Honda-Tate theory. We prove a large part of this conjecture for Shimura varieties of PEL type. Our results make no assumption on the availability of a good integral model for the Shimura variety. In particular, the group G may be ramified at p.
志村变异的Honda-Tate理论
Hodge型的志村变种是阿贝尔变种具有一定的Hodge循环集合的模空间。我们证明了在这些变异上的牛顿地层是非空的,只要对应的群G在p处是拟分裂的,在这种情况下证实了Fargues和Rapoport的一个猜想。在相同的条件下,我们推测在这样一个变种上的每一个模p同系类都包含一个特殊点的约化。这是对本田-泰特理论的改进。我们对PEL型的Shimura变种证明了这一猜想的很大一部分。我们的结果没有假设志村品种的一个好的积分模型的可用性。特别地,G基团可以在p点被分叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信