T. Agustina, Rianyza Gayatri, D. Bahrin, R. Moeksin, Gustini
{"title":"ZnO-Zeolite nanocomposite application for photocatalytic degradation of procion red and its adsorption isotherm","authors":"T. Agustina, Rianyza Gayatri, D. Bahrin, R. Moeksin, Gustini","doi":"10.14311/ap.2022.62.0238","DOIUrl":null,"url":null,"abstract":"In this paper, the photocatalytic degradation of procion red dye, one of the most frequently used dyes in the textile industry, was studied. The objective of the research is to study the ZnO-Zeolite nanocomposite application to degrade procion red dye by using different irradiation sources. The adsorption isotherm was also investigated. The ZnO-Zeolite nanocomposite was prepared by a sol-gel process. Photodegradation test was applied under the sunlight irradiation, ultraviolet (UV) lamp, and in a darkroom. The dye degradation was also examined by the synthetic zeolite and ZnO for a comparison. Another objective of this study is to analyse the appropriate adsorption isotherm to describe the degradation process of procion red dye by using ZnO-Zeolite nanocomposite. The adsorption ability of the nanocomposite was described by Langmuir and Freundlich isotherms. The adsorption of the nanocomposite was reported to depend on the degradation time. The highest photodegradation result of 98.24 % was achieved by irradiating 50 mg/l of procion red dye under the sunlight for 120 minutes. The result showed that the Langmuir adsorption isotherm was the appropriate adsorption equation for the degradation process of procion red dye by using ZnO-Zeolite nanocomposite with R2 value of 0.995. ","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the photocatalytic degradation of procion red dye, one of the most frequently used dyes in the textile industry, was studied. The objective of the research is to study the ZnO-Zeolite nanocomposite application to degrade procion red dye by using different irradiation sources. The adsorption isotherm was also investigated. The ZnO-Zeolite nanocomposite was prepared by a sol-gel process. Photodegradation test was applied under the sunlight irradiation, ultraviolet (UV) lamp, and in a darkroom. The dye degradation was also examined by the synthetic zeolite and ZnO for a comparison. Another objective of this study is to analyse the appropriate adsorption isotherm to describe the degradation process of procion red dye by using ZnO-Zeolite nanocomposite. The adsorption ability of the nanocomposite was described by Langmuir and Freundlich isotherms. The adsorption of the nanocomposite was reported to depend on the degradation time. The highest photodegradation result of 98.24 % was achieved by irradiating 50 mg/l of procion red dye under the sunlight for 120 minutes. The result showed that the Langmuir adsorption isotherm was the appropriate adsorption equation for the degradation process of procion red dye by using ZnO-Zeolite nanocomposite with R2 value of 0.995.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.