Mixture Composite Regression Models with Multi-type Feature Selection

IF 1.4 Q3 BUSINESS, FINANCE
Tsz Chai Fung, G. Tzougas, M. Wüthrich
{"title":"Mixture Composite Regression Models with Multi-type Feature Selection","authors":"Tsz Chai Fung, G. Tzougas, M. Wüthrich","doi":"10.1080/10920277.2022.2099426","DOIUrl":null,"url":null,"abstract":"The aim of this article is to present a mixture composite regression model for claim severity modeling. Claim severity modeling poses several challenges such as multimodality, tail-heaviness, and systematic effects in data. We tackle this modeling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us to select the explanatory variables that significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel generalized expectation-maximization algorithm. We exemplify our approach on a real motor insurance dataset.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"27 1","pages":"396 - 428"},"PeriodicalIF":1.4000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2099426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 13

Abstract

The aim of this article is to present a mixture composite regression model for claim severity modeling. Claim severity modeling poses several challenges such as multimodality, tail-heaviness, and systematic effects in data. We tackle this modeling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us to select the explanatory variables that significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel generalized expectation-maximization algorithm. We exemplify our approach on a real motor insurance dataset.
多类型特征选择的混合复合回归模型
本文的目的是提出一个用于索赔严重性建模的混合复合回归模型。索赔严重性建模提出了几个挑战,例如数据中的多模态、尾重和系统效应。我们通过研究混合复合回归模型来解决这一建模问题,该模型用于同时建模摩擦性索赔和大型索赔,并考虑混合成分和混合概率中的系统效应。对于模型拟合,我们提出了一种组融合正则化方法,使我们能够分别选择显著影响混合概率和不同混合成分的解释变量。我们为这种正则化估计方法建立了一个渐近理论,并使用一种新的广义期望最大化算法进行拟合。我们在一个真实的汽车保险数据集上举例说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信