Model category of diffeological spaces

IF 0.5 4区 数学
Hiroshi Kihara
{"title":"Model category of diffeological spaces","authors":"Hiroshi Kihara","doi":"10.1007/s40062-018-0209-3","DOIUrl":null,"url":null,"abstract":"<p>The existence of a model structure on the category <span>\\({\\mathcal {D}}\\)</span> of diffeological spaces is crucial to developing smooth homotopy theory. We construct a compactly generated model structure on the category <span>\\({\\mathcal {D}}\\)</span> whose weak equivalences are just smooth maps inducing isomorphisms on smooth homotopy groups. The essential part of our construction of the model structure on <span>\\({\\mathcal {D}}\\)</span> is to introduce diffeologies on the sets <span>\\(\\varDelta ^{p}\\)</span><span>\\((p \\ge 0)\\)</span> such that <span>\\(\\varDelta ^{p}\\)</span> contains the <span>\\(k\\mathrm{th}\\)</span> horn <span>\\(\\varLambda ^{p}_{k}\\)</span> as a smooth deformation retract.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 1","pages":"51 - 90"},"PeriodicalIF":0.5000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0209-3","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0209-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The existence of a model structure on the category \({\mathcal {D}}\) of diffeological spaces is crucial to developing smooth homotopy theory. We construct a compactly generated model structure on the category \({\mathcal {D}}\) whose weak equivalences are just smooth maps inducing isomorphisms on smooth homotopy groups. The essential part of our construction of the model structure on \({\mathcal {D}}\) is to introduce diffeologies on the sets \(\varDelta ^{p}\)\((p \ge 0)\) such that \(\varDelta ^{p}\) contains the \(k\mathrm{th}\) horn \(\varLambda ^{p}_{k}\) as a smooth deformation retract.

Abstract Image

微分空间的模型范畴
在微分空间的\({\mathcal {D}}\)范畴上模型结构的存在性对于发展光滑同伦理论是至关重要的。我们在范畴\({\mathcal {D}}\)上构造了一个紧生成的模型结构,其弱等价是光滑同伦群上诱导同构的光滑映射。我们在\({\mathcal {D}}\)上构建模型结构的关键部分是在\(\varDelta ^{p}\)\((p \ge 0)\)上引入差分,使\(\varDelta ^{p}\)包含\(k\mathrm{th}\)角\(\varLambda ^{p}_{k}\)作为平滑变形缩回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信