Adapting Zeroth Order Algorithms for Comparison-Based Optimization

Isha Slavin, Daniel Mckenzie
{"title":"Adapting Zeroth Order Algorithms for Comparison-Based Optimization","authors":"Isha Slavin, Daniel Mckenzie","doi":"10.1137/22s1530951","DOIUrl":null,"url":null,"abstract":"Comparison-Based Optimization (CBO) is an optimization paradigm that assumes only very limited access to the objective function f(x). Despite the growing relevance of CBO to real-world applications, this field has received little attention as compared to the adjacent field of Zeroth-Order Optimization (ZOO). In this work we propose a relatively simple method for converting ZOO algorithms to CBO algorithms, thus greatly enlarging the pool of known algorithms for CBO. Via PyCUTEst, we benchmarked these algorithms against a suite of unconstrained problems. We then used hyperparameter tuning to determine optimal values of the parameters of certain algorithms, and utilized visualization tools such as heat maps and line graphs for purposes of interpretation. All our code is available at https://github.com/ishaslavin/Comparison_Based_Optimization.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1530951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Comparison-Based Optimization (CBO) is an optimization paradigm that assumes only very limited access to the objective function f(x). Despite the growing relevance of CBO to real-world applications, this field has received little attention as compared to the adjacent field of Zeroth-Order Optimization (ZOO). In this work we propose a relatively simple method for converting ZOO algorithms to CBO algorithms, thus greatly enlarging the pool of known algorithms for CBO. Via PyCUTEst, we benchmarked these algorithms against a suite of unconstrained problems. We then used hyperparameter tuning to determine optimal values of the parameters of certain algorithms, and utilized visualization tools such as heat maps and line graphs for purposes of interpretation. All our code is available at https://github.com/ishaslavin/Comparison_Based_Optimization.
基于比较优化的零阶自适应算法
基于比较的优化(CBO)是一种优化范式,它假设对目标函数f(x)的访问非常有限。尽管CBO与现实世界应用的相关性越来越大,但与零阶优化(ZOO)的相邻领域相比,该领域几乎没有受到关注。在这项工作中,我们提出了一种相对简单的方法来将ZOO算法转换为CBO算法,从而大大扩大了CBO的已知算法库。通过PyCUEst,我们针对一组无约束问题对这些算法进行了基准测试。然后,我们使用超参数调整来确定某些算法的参数的最佳值,并使用热图和折线图等可视化工具进行解释。我们的所有代码都可以在https://github.com/ishaslavin/Comparison_Based_Optimization.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信