{"title":"Adapting Zeroth Order Algorithms for Comparison-Based Optimization","authors":"Isha Slavin, Daniel Mckenzie","doi":"10.1137/22s1530951","DOIUrl":null,"url":null,"abstract":"Comparison-Based Optimization (CBO) is an optimization paradigm that assumes only very limited access to the objective function f(x). Despite the growing relevance of CBO to real-world applications, this field has received little attention as compared to the adjacent field of Zeroth-Order Optimization (ZOO). In this work we propose a relatively simple method for converting ZOO algorithms to CBO algorithms, thus greatly enlarging the pool of known algorithms for CBO. Via PyCUTEst, we benchmarked these algorithms against a suite of unconstrained problems. We then used hyperparameter tuning to determine optimal values of the parameters of certain algorithms, and utilized visualization tools such as heat maps and line graphs for purposes of interpretation. All our code is available at https://github.com/ishaslavin/Comparison_Based_Optimization.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1530951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Comparison-Based Optimization (CBO) is an optimization paradigm that assumes only very limited access to the objective function f(x). Despite the growing relevance of CBO to real-world applications, this field has received little attention as compared to the adjacent field of Zeroth-Order Optimization (ZOO). In this work we propose a relatively simple method for converting ZOO algorithms to CBO algorithms, thus greatly enlarging the pool of known algorithms for CBO. Via PyCUTEst, we benchmarked these algorithms against a suite of unconstrained problems. We then used hyperparameter tuning to determine optimal values of the parameters of certain algorithms, and utilized visualization tools such as heat maps and line graphs for purposes of interpretation. All our code is available at https://github.com/ishaslavin/Comparison_Based_Optimization.