The maximal flow from a compact convex subset to infinity in first passage percolation on $\mathbb{Z}^{d}$

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Barbara Dembin
{"title":"The maximal flow from a compact convex subset to infinity in first passage percolation on $\\mathbb{Z}^{d}$","authors":"Barbara Dembin","doi":"10.1214/19-aop1367","DOIUrl":null,"url":null,"abstract":"We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aop1367","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the standard first passage percolation model on Z^d with a distribution G on R+ that admits an exponential moment. We study the maximal flow between a compact convex subset A of R^d and infinity. The study of maximal flow is associated with the study of sets of edges of minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA and infinity φ(nA)/n^ (d−1) almost surely converges towards a deterministic constant depending on A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher dimensions by Garet in [6].
$\mathbb{Z}^{d}$上从紧凸子集到无限的第一遍渗流的最大流
我们考虑Z^d上的标准第一通道渗流模型,其分布G在R+上允许指数矩。研究了R^d的紧凸子集a与无穷远之间的极大流。最大流量的研究是与最小化容量边集的研究相联系的,这些边集从无穷远切割出A。我们证明了在nA和无穷之间φ(nA)/n^ (d - 1)的重标最大流几乎肯定会收敛于一个依赖于a的确定性常数。这个常数对应于边界∂a (a)的容量,并且是一个确定性函数在∂a上的积分。这一结果在维度2中得到了显示,并由Garet在[6]中对更高维度进行了推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信