Gauss maps of harmonic and minimal great circle fibrations

IF 0.6 3区 数学 Q3 MATHEMATICS
Ioannis Fourtzis, Michael Markellos, Andreas Savas-Halilaj
{"title":"Gauss maps of harmonic and minimal great circle fibrations","authors":"Ioannis Fourtzis,&nbsp;Michael Markellos,&nbsp;Andreas Savas-Halilaj","doi":"10.1007/s10455-023-09886-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate Gauss maps associated to great circle fibrations of the euclidean unit 3-sphere <span>\\(\\mathbb {S}^3\\)</span>. We show that the associated Gauss map to such a fibration is harmonic, respectively minimal, if and only if the unit vector field generating the great circle foliation is harmonic, respectively minimal. These results can be viewed as analogues of the classical theorem of Ruh and Vilms about the harmonicity of the Gauss map of a minimal submanifold in the euclidean space. Moreover, we prove that a harmonic or minimal unit vector field on <span>\\(\\mathbb {S}^3\\)</span>, whose integral curves are great circles, is a Hopf vector field.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09886-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09886-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate Gauss maps associated to great circle fibrations of the euclidean unit 3-sphere \(\mathbb {S}^3\). We show that the associated Gauss map to such a fibration is harmonic, respectively minimal, if and only if the unit vector field generating the great circle foliation is harmonic, respectively minimal. These results can be viewed as analogues of the classical theorem of Ruh and Vilms about the harmonicity of the Gauss map of a minimal submanifold in the euclidean space. Moreover, we prove that a harmonic or minimal unit vector field on \(\mathbb {S}^3\), whose integral curves are great circles, is a Hopf vector field.

调和和最小大圆振动的高斯图
我们研究了与欧氏单位3-球体(\mathbb{S}^3\)的大圆纤维化有关的高斯映射。我们证明了与这种fibration相关的高斯映射是调和的,分别是极小的,当且仅当产生大圆叶理的单位向量场是调和的、分别是最小的。这些结果可以看作是Ruh和Vilms关于欧氏空间中极小子流形的高斯映射的调和性的经典定理的类似物。此外,我们证明了积分曲线为大圆的\(\mathbb{S}^3\)上的调和或最小单位向量场是Hopf向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信