Bianchi’s additional symmetries

Pub Date : 2020-07-20 DOI:10.1007/s40062-020-00262-4
Alexander D. Rahm
{"title":"Bianchi’s additional symmetries","authors":"Alexander D. Rahm","doi":"10.1007/s40062-020-00262-4","DOIUrl":null,"url":null,"abstract":"<p>In a 2012 note in Comptes Rendus Mathématique, the author did try to answer a question of Jean-Pierre Serre; it has recently been announced that the scope of that answer needs an adjustment, and the details of this adjustment are given in the present paper. The original question is the following. Consider the ring of integers?<span>\\(\\mathcal {O}\\)</span> in an imaginary quadratic number field, and the Borel–Serre compactification of the quotient of hyperbolic 3–space by <span>\\(\\mathrm {SL_2}(\\mathcal {O})\\)</span>. Consider the map?<span>\\(\\alpha \\)</span> induced on homology when attaching the boundary into the Borel–Serre compactification. <i>How can one determine the kernel of</i>?<span>\\(\\alpha \\)</span> <i>(in degree 1) ?</i> Serre used a global topological argument and obtained the rank of the kernel of?<span>\\(\\alpha \\)</span>. He added the question what submodule precisely this kernel is.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00262-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00262-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a 2012 note in Comptes Rendus Mathématique, the author did try to answer a question of Jean-Pierre Serre; it has recently been announced that the scope of that answer needs an adjustment, and the details of this adjustment are given in the present paper. The original question is the following. Consider the ring of integers?\(\mathcal {O}\) in an imaginary quadratic number field, and the Borel–Serre compactification of the quotient of hyperbolic 3–space by \(\mathrm {SL_2}(\mathcal {O})\). Consider the map?\(\alpha \) induced on homology when attaching the boundary into the Borel–Serre compactification. How can one determine the kernel of?\(\alpha \) (in degree 1) ? Serre used a global topological argument and obtained the rank of the kernel of?\(\alpha \). He added the question what submodule precisely this kernel is.

分享
查看原文
比安奇的额外对称性
在2012年发表于《计算机数据统计》(Comptes Rendus mathematique)的一篇文章中,作者确实试图回答让-皮埃尔·塞尔(Jean-Pierre Serre);最近已宣布,该答复的范围需要调整,本文件将详细说明这一调整。原来的问题如下。考虑整数环?在虚二次数域\(\mathcal {O}\)中,以及双曲三维空间商的Borel-Serre紧化\(\mathrm {SL_2}(\mathcal {O})\)。考虑地图?\(\alpha \)在将边界附加到Borel-Serre紧化时诱导了同源性。如何确定的核?\(\alpha \)(1级)?Serre使用了全局拓扑参数,得到了?\(\alpha \)。他还提出了这个内核到底是哪个子模块的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信