Explicit Evaluation of Some Quadratic Euler-Type Sums Containing Double-Index Harmonic Numbers

Q4 Mathematics
S. Stewart
{"title":"Explicit Evaluation of Some Quadratic Euler-Type Sums Containing Double-Index Harmonic Numbers","authors":"S. Stewart","doi":"10.2478/tmmp-2020-0034","DOIUrl":null,"url":null,"abstract":"Abstract In this paper a number of new explicit expressions for quadratic Euler-type sums containing double-index harmonic numbers H2n are given. These are obtained using ordinary generating functions containing the square of the harmonic numbers Hn. As a by-product of the generating function approach used new proofs for the remarkable quadratic series of Au-Yeung ∑n=1∞(Hnn)2=17π4360\\sum\\limits_{n = 1}^\\infty {{{\\left( {{{{H_n}} \\over n}} \\right)}^2} = {{17{\\pi ^4}} \\over {360}}} together with its closely related alternating cousin are given. New proofs for other closely related quadratic Euler-type sums that are known in the literature are also obtained.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"77 1","pages":"73 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2020-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In this paper a number of new explicit expressions for quadratic Euler-type sums containing double-index harmonic numbers H2n are given. These are obtained using ordinary generating functions containing the square of the harmonic numbers Hn. As a by-product of the generating function approach used new proofs for the remarkable quadratic series of Au-Yeung ∑n=1∞(Hnn)2=17π4360\sum\limits_{n = 1}^\infty {{{\left( {{{{H_n}} \over n}} \right)}^2} = {{17{\pi ^4}} \over {360}}} together with its closely related alternating cousin are given. New proofs for other closely related quadratic Euler-type sums that are known in the literature are also obtained.
一类含双指标调和数的二次Euler型和的显式估计
摘要本文给出了含有双指标调和数H2n的二次Euler型和的一些新的显式表达式。这些是使用包含谐波数Hn的平方的普通生成函数来获得的。作为生成函数方法的副产品,给出了Au Yeung∑n=1∞(Hnn)2=17π4360\sum\limits_{n=1}^\infty{{{\left({{{H_n}}}\overn}}}\right)}^2}={{17{\pi^4}}\over{360}}}}的显著二次级数及其密切相关的交替表亲的新证明。还获得了文献中已知的其他密切相关的二次欧拉型和的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信