Variable Selection in High Dimensional Data with Interactions

Q3 Computer Science
Zuharah Jaafar, N. Ismail
{"title":"Variable Selection in High Dimensional Data with Interactions","authors":"Zuharah Jaafar, N. Ismail","doi":"10.15849/ijasca.220720.11","DOIUrl":null,"url":null,"abstract":"A common research area in statistical machine learning has been variable selection in high dimensional settings. In recent years, numerous effective approaches have been created to deal with these challenges. In order to improve the prediction accuracy of the model for the given dataset, this study sought to present a double approach variable selection method when pairwise interactions between the explanatory variables exist and to choose the smallest explanatory variable set (considering interactions among them). In this study, a double step method consolidating Random Forest and Adaptive Elastic Net was further examined to mimic potential health effects of environmental contamination. When there were existing interactions in the data or none at all, the double step approach was compared to the single-step adaptive elastic net method and two-step CART paired with the adaptive elastic net method. Using significant statistical tests like RMSE, R2 , and the quantity of the variable chosen for the final model, the success of the strategies was measured. The double step RF+AENET approach produces a simple, constrained model. Despite the complex association between exposure variables, it has the lowest false detection rate for null interactions. A set of variables that have correlation with the result are effectively retained by the screening and variable reduction processes in the RF step of the RF+AENET approach. The double step RF+AENET performs prediction better than a single technique and chooses a sparse model that is close to the true model. Thus, it can be said that when there are pairwise interactions between variables in the simulated biological dataset, the double step technique is a better method for model prediction and parameter estimation. Keywords: Adaptive Elastic Net, Random Forest, Variable Selection, CART.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220720.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

A common research area in statistical machine learning has been variable selection in high dimensional settings. In recent years, numerous effective approaches have been created to deal with these challenges. In order to improve the prediction accuracy of the model for the given dataset, this study sought to present a double approach variable selection method when pairwise interactions between the explanatory variables exist and to choose the smallest explanatory variable set (considering interactions among them). In this study, a double step method consolidating Random Forest and Adaptive Elastic Net was further examined to mimic potential health effects of environmental contamination. When there were existing interactions in the data or none at all, the double step approach was compared to the single-step adaptive elastic net method and two-step CART paired with the adaptive elastic net method. Using significant statistical tests like RMSE, R2 , and the quantity of the variable chosen for the final model, the success of the strategies was measured. The double step RF+AENET approach produces a simple, constrained model. Despite the complex association between exposure variables, it has the lowest false detection rate for null interactions. A set of variables that have correlation with the result are effectively retained by the screening and variable reduction processes in the RF step of the RF+AENET approach. The double step RF+AENET performs prediction better than a single technique and chooses a sparse model that is close to the true model. Thus, it can be said that when there are pairwise interactions between variables in the simulated biological dataset, the double step technique is a better method for model prediction and parameter estimation. Keywords: Adaptive Elastic Net, Random Forest, Variable Selection, CART.
具有交互作用的高维数据中的变量选择
统计机器学习的一个常见研究领域是高维环境下的变量选择。近年来,已经制定了许多有效的方法来应对这些挑战。为了提高模型对给定数据集的预测精度,本研究试图提出在解释变量之间存在两两交互作用时,选择最小解释变量集(考虑它们之间的交互作用)的双途径变量选择方法。在本研究中,我们进一步研究了一种双步方法,将随机森林和自适应弹性网络整合在一起,以模拟环境污染对健康的潜在影响。当数据中存在相互作用或不存在相互作用时,将双步法与单步自适应弹性网法和两步CART与自适应弹性网法配对进行比较。使用RMSE、R2和最终模型选择的变量数量等显著统计检验来衡量策略的成功。双步RF+AENET方法产生了一个简单的约束模型。尽管暴露变量之间存在复杂的关联,但它对零相互作用的误检率最低。在RF+AENET方法的RF步骤中,筛选和变量缩减过程有效地保留了一组与结果相关的变量。双步RF+AENET预测效果优于单步技术,并选择接近真实模型的稀疏模型。因此,可以说,当模拟生物数据集中变量之间存在两两相互作用时,双步技术是一种较好的模型预测和参数估计方法。关键词:自适应弹性网,随机森林,变量选择,CART。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信