Fundamentals and recent progress of additive manufacturing-assisted porous materials on transpiration cooling

IF 1.1 Q4 ENGINEERING, MECHANICAL
R. Xu, Zhilong Cheng, Peixue Jiang
{"title":"Fundamentals and recent progress of additive manufacturing-assisted porous materials on transpiration cooling","authors":"R. Xu, Zhilong Cheng, Peixue Jiang","doi":"10.33737/jgpps/166418","DOIUrl":null,"url":null,"abstract":"The requirements for new generation vehicles in terms of the flight speed, thrust–weight ratio, and maneuverability necessitate the development of high performance and reliable propulsion systems where active thermal protection technology plays a crucial role. Transpiration cooling based on a microporous structure is considered as one of the most promising techniques for protecting the high heat flux walls from ablation in aerospace applications. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate three-dimensional (3D) porous structures with customized geometries that are specific to applications, i.e., in terms of the design of features such as the pore diameter, pore density, porosity, and pore morphology. Three major AM technologies (selective laser melting, inkjet, and stereolithography) followed by a post-printing process have been proposed for the additive manufacture of porous structures. In particular, 3D-printed porous structures have great promise for transpiration cooling applications. In this review, we discuss the detailed steps of porous structure topology design and a general framework is presented for AM. The heat transfer and strength performance are also provided for porous parts fabricated by AM. Furthermore, the applications of 3D-printed porous media in transpiration cooling with different regimes are described. This review concludes by explaining the current challenges and prospects for the next generation of 3D-printed porous structures in transpiration cooling systems.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/166418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The requirements for new generation vehicles in terms of the flight speed, thrust–weight ratio, and maneuverability necessitate the development of high performance and reliable propulsion systems where active thermal protection technology plays a crucial role. Transpiration cooling based on a microporous structure is considered as one of the most promising techniques for protecting the high heat flux walls from ablation in aerospace applications. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate three-dimensional (3D) porous structures with customized geometries that are specific to applications, i.e., in terms of the design of features such as the pore diameter, pore density, porosity, and pore morphology. Three major AM technologies (selective laser melting, inkjet, and stereolithography) followed by a post-printing process have been proposed for the additive manufacture of porous structures. In particular, 3D-printed porous structures have great promise for transpiration cooling applications. In this review, we discuss the detailed steps of porous structure topology design and a general framework is presented for AM. The heat transfer and strength performance are also provided for porous parts fabricated by AM. Furthermore, the applications of 3D-printed porous media in transpiration cooling with different regimes are described. This review concludes by explaining the current challenges and prospects for the next generation of 3D-printed porous structures in transpiration cooling systems.
增材制造辅助多孔材料蒸发冷却的基本原理及最新进展
新一代飞行器在飞行速度、推重比和机动性方面的要求要求研制高性能、可靠的推进系统,主动热防护技术在其中起着至关重要的作用。基于微孔结构的蒸腾冷却被认为是保护高热流密度壁免受烧蚀的最有前途的技术之一。与传统的制造方法不同,增材制造(AM)已经被应用于制造具有特定应用的定制几何形状的三维(3D)多孔结构,即在孔径、孔隙密度、孔隙率和孔隙形态等特征的设计方面。三种主要的增材制造技术(选择性激光熔化、喷墨和立体光刻)以及后印刷工艺已经被提出用于多孔结构的增材制造。特别是,3d打印多孔结构在蒸腾冷却应用方面具有很大的前景。在这篇综述中,我们讨论了多孔结构拓扑设计的详细步骤,并提出了AM的总体框架。还提供了增材制造多孔零件的传热和强度性能。此外,还介绍了3d打印多孔介质在不同机制下的蒸腾冷却中的应用。这篇综述最后解释了当前的挑战和下一代3d打印多孔结构在蒸腾冷却系统中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信