Scott Raulerson, Johnson B. Jeffers, Natalie A. Griffiths, Benjamin M. Rau, Cody Matteson, C. Rhett Jackson
{"title":"Rapid denitrification of nitrate-contaminated groundwater in a low-gradient blackwater stream valley","authors":"Scott Raulerson, Johnson B. Jeffers, Natalie A. Griffiths, Benjamin M. Rau, Cody Matteson, C. Rhett Jackson","doi":"10.1007/s10533-023-01077-0","DOIUrl":null,"url":null,"abstract":"<div><p>Leaching of excess nitrogen (N) to groundwater in fertilized landscapes can overwhelm natural biogeochemical processes and cause long-term eutrophication of aquatic systems. We investigated N fate and transport from an intensively managed short-rotation woody crop (<i>Pinus taeda</i>) plantation through the riparian zone of an intermittent, low-gradient blackwater stream. Fertilization of the <i>P. taeda</i> plantation on the uplands resulted in contamination of groundwater with nitrate concentrations between 0.9 and 1.9 mg N L<sup>−1</sup>. No corresponding increase in nitrate was observed in stream water or shallow groundwater in the riparian zone. Groundwater travel-time modeling predicted that N from near-stream, upland plantation areas should have reached streams during the monitoring period. Two years of measuring N species in well water in contrasting landscape positions (within the plantation, swale, riparian edge, forested hillslope, and valley), indicated rapid nitrate transformation and denitrification within the forested wetland valleys. Denitrification in the shallow groundwater system within the toeslopes and the riparian zone was estimated to have removed > 90% of nitrate. These results highlight the importance of riparian zones as pathways for the removal of N and for controlling downstream N loads.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 1","pages":"1 - 20"},"PeriodicalIF":3.9000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01077-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Leaching of excess nitrogen (N) to groundwater in fertilized landscapes can overwhelm natural biogeochemical processes and cause long-term eutrophication of aquatic systems. We investigated N fate and transport from an intensively managed short-rotation woody crop (Pinus taeda) plantation through the riparian zone of an intermittent, low-gradient blackwater stream. Fertilization of the P. taeda plantation on the uplands resulted in contamination of groundwater with nitrate concentrations between 0.9 and 1.9 mg N L−1. No corresponding increase in nitrate was observed in stream water or shallow groundwater in the riparian zone. Groundwater travel-time modeling predicted that N from near-stream, upland plantation areas should have reached streams during the monitoring period. Two years of measuring N species in well water in contrasting landscape positions (within the plantation, swale, riparian edge, forested hillslope, and valley), indicated rapid nitrate transformation and denitrification within the forested wetland valleys. Denitrification in the shallow groundwater system within the toeslopes and the riparian zone was estimated to have removed > 90% of nitrate. These results highlight the importance of riparian zones as pathways for the removal of N and for controlling downstream N loads.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.