A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Stavros Birmpilis, G. Labahn, A. Storjohann
{"title":"A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix","authors":"Stavros Birmpilis, G. Labahn, A. Storjohann","doi":"10.1145/3617996","DOIUrl":null,"url":null,"abstract":"A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer matrix A of dimension n. The algorithm uses quadratic integer multiplication and cubic matrix multiplication and has running time bounded by O(n3(log n + log ||A||)2(log n)2) bit operations, where ||A|| = max ij|Aij| denotes the largest entry of A in absolute value. A variant of the algorithm that uses pseudo-linear integer multiplication is given that has running time (n3log ||A||)1 + o(1) bit operations, where the exponent `` + o(1)′′ captures additional factors \\(c_1 (\\log n)^{c_2} (\\rm {loglog} ||A||)^{c_3} \\) for positive real constants c1, c2, c3.","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3617996","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer matrix A of dimension n. The algorithm uses quadratic integer multiplication and cubic matrix multiplication and has running time bounded by O(n3(log n + log ||A||)2(log n)2) bit operations, where ||A|| = max ij|Aij| denotes the largest entry of A in absolute value. A variant of the algorithm that uses pseudo-linear integer multiplication is given that has running time (n3log ||A||)1 + o(1) bit operations, where the exponent `` + o(1)′′ captures additional factors \(c_1 (\log n)^{c_2} (\rm {loglog} ||A||)^{c_3} \) for positive real constants c1, c2, c3.
计算非奇异整矩阵Hermite范式的三次算法
给出了一个Las Vegas随机算法来计算维数为n的非奇异整数矩阵A的Hermite正规形式。该算法使用二次整数乘法和三次矩阵乘法,运行时间以O(n3(log n+日志 ||A||)2(日志 n) 2)位运算,其中||A||=max ij|Aij|表示绝对值中A的最大条目。给出了使用伪线性整数乘法的算法的一个变体,该变体具有运行时间(n3log ||A||)1+o(1)位运算,其中指数“+o(1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信